Proceedings of the Japan Academy, Series A, Mathematical Sciences

Product formula for twisted MacPherson classes

Michal Kwieciński and Shoji Yokura

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 68, Number 7 (1992), 167-171.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195511700

Digital Object Identifier
doi:10.3792/pjaa.68.167

Mathematical Reviews number (MathSciNet)
MR1193174

Zentralblatt MATH identifier
0781.57012

Citation

Kwieciński, Michal; Yokura, Shoji. Product formula for twisted MacPherson classes. Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 7, 167--171. doi:10.3792/pjaa.68.167. https://projecteuclid.org/euclid.pja/1195511700


Export citation

References

  • [1] Brasselet, J.-P. and Schwartz, M.-H.: Sur les classes de Chern d'un ensemble analytique complexe. Asterisque, 82-83, 93-147 (1981).
  • [2] Goresky, M. and MacPherson, R.: Intersection homology theory. Topology, 19, 135-162 (1980).
  • [3] Kwiecinski, M.: Formule du produit pour les classes caracteristiques de Chern-Schwartz-MacPherson et homologie d'intersection. C. R. Acad. Sci., Paris, 314, Sreie I, 625-628 (1992).
  • [4] MacPherson, R.: Chern classes for singular algebraic varieties. Ann. of Math., 100, 423-432 (1974).
  • [5] Schwartz, M.-H.: Classes caracteristiques definies par une stratification d'une variete analytique complexe. C. R. Acad. Sci., Paris, 260, 3262-3264;3535-3537 (1965).
  • [6] Yokura, S.: On a generalization of MacPherson's Chern homology class. Proc. Japan Acad., 65A, 242-244 (1989).
  • [7] Yokura, S.: An extension of Deligne-Grothendieck-MacPherson's theory C* of Chern classes for singular algebraic varieties. Publ. RIMS, Kyoto Univ., 27, no. 5, 745-762 (1991).