Proceedings of the Japan Academy, Series A, Mathematical Sciences

Commuting families of symmetric differential operators

Hiroyuki Ochiai, Toshio Oshima, and Hideko Sekiguchi

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 70, Number 2 (1994), 62-66.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195511138

Digital Object Identifier
doi:10.3792/pjaa.70.62

Mathematical Reviews number (MathSciNet)
MR1272672

Zentralblatt MATH identifier
0817.22010

Citation

Ochiai, Hiroyuki; Oshima, Toshio; Sekiguchi, Hideko. Commuting families of symmetric differential operators. Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), no. 2, 62--66. doi:10.3792/pjaa.70.62. https://projecteuclid.org/euclid.pja/1195511138


Export citation

References

  • [1] Harish-Chandra: Representations of semisimple Lie groups. IV. Amer. J. Math., 77, 743-777 (1955).
  • [2] G. J. Heckman : Root system and hypergeometric functions. II. Comp. Math., 64, 353-373 (1987).
  • [3] G. J. Heckman : An elementary approach to the hypergeometric shift operators of Opdam. Invent. Math., 103, 341-350 (1991).
  • [4] G. J. Heckman and E. M. Opdam : Root system and hypergeometric functions. I. Comp. Math., 64, 329-352 (1987).
  • [5] T. Oshima: Completely integrable systems with a symmetry in coordinates. UTMS 94-6, Dept. of Mathematical Sciences, Univ. of Tokyo (1994) (preprint).
  • [6] H. Ochiai and T. Oshima: Commuting families of differential operators invariant under the action of a Weyl group. II (in preparation).
  • [7] E. M. Opdam : Root system and hypergeometric functions. III. Comp. Math., 67, 21-49 (1988).
  • [8] E. M. Opdam : ditto. IV. ibid., 67, 191-209 (1988).
  • [9] M. A. Olshanetsky and A. M. Perelomov: Classical integrable finite dimensional systems related to Lie algebras. Phys. Rep., 71, 313-400 (1981).
  • [10] M. A. Olshanetsky and A. M. Perelomov: Quantum integrable systems related to Lie algebras, ibid., 94, 313-404 (1983).
  • [11] T. Oshima and H. Sekiguchi: Commuting families of differential operators invariant under the action of a Weyl group. UTMS 93-43, Dept. of Mathematical Sciences, Univ. of Tokyo (1993) (preprint).
  • [12] J. Sekiguchi: Zonal spherical functions on some symmetric spaces. Publ. RIMS Kyoto Univ., 12 Suppl., 455-459 (1977).
  • [13] H. Sekiguchi: Radial parts of Casimir operators on semisimple symmetric spaces. RIMS KokyuRoku, 816, 155-168 (1992) (Japanese).
  • [14] E. T. Whittaker and G. N. Watson: A Course of Modern Analysis. 4th ed., Cambridge University Press (1927).