Proceedings of the Japan Academy, Series A, Mathematical Sciences

Dihedral extensions of degree $8$ over the rational $p$-adic fields

Hirotada Naito

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 71, Number 1 (1995), 17-18.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195510841

Digital Object Identifier
doi:10.3792/pjaa.71.17

Mathematical Reviews number (MathSciNet)
MR1326788

Zentralblatt MATH identifier
0839.11060

Subjects
Primary: 11S20: Galois theory

Citation

Naito, Hirotada. Dihedral extensions of degree $8$ over the rational $p$-adic fields. Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), no. 1, 17--18. doi:10.3792/pjaa.71.17. https://projecteuclid.org/euclid.pja/1195510841


Export citation

References

  • [1] G. Fujisaki: A remark on quaternion extensions of the rational ^-adic field. Proc. Japan Acad., 66A, 257-259 (1990).
  • [2] J.-P. Serre: Une (formule de masse) pour les extensions totalement ramifiees de degre donne d'un corps local. C. R. Acad. Sci. Paris, 286, 1031-1036 (1978).
  • [3] M. Yamagishi: On the number of Galois p-extensions of a local field (to appear in Proc. Amer. Math. Soc).
  • [4] A. Weil: Basic Number Theory. 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York (1973).