Proceedings of the Japan Academy, Series A, Mathematical Sciences

On the Kloosterman-sum zeta-function

Yoichi Motohashi

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 71, Number 4 (1995), 69-71.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195510736

Digital Object Identifier
doi:10.3792/pjaa.71.69

Mathematical Reviews number (MathSciNet)
MR1332952

Zentralblatt MATH identifier
0834.11035

Subjects
Primary: 11M41: Other Dirichlet series and zeta functions {For local and global ground fields, see 11R42, 11R52, 11S40, 11S45; for algebro-geometric methods, see 14G10; see also 11E45, 11F66, 11F70, 11F72}
Secondary: 11L05: Gauss and Kloosterman sums; generalizations

Citation

Motohashi, Yoichi. On the Kloosterman-sum zeta-function. Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), no. 4, 69--71. doi:10.3792/pjaa.71.69. https://projecteuclid.org/euclid.pja/1195510736


Export citation

References

  • [1] N. V. Kuznetsov : Petersson hypothesis for parabolic forms of weight zero and Linnik hypothesis. Sums of Kloosterman sums. Mat. Sbornik, 111, 334-383 (1980) (Russian).
  • [2] A. Selberg: On the estimation of Fourier coefficients of modular forms. Proc. Symp. Pure Math., 8, 1-15 (1965).
  • [3] G. N. Watson : A Treatise on the Theory of Bessel Functions. Cambridge Univ. Press (1944).