Proceedings of the Japan Academy, Series A, Mathematical Sciences

Corestriction principle in non abelian Galois cohomology

Quôć Thǎńg Nguyêñ

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 74, Number 4 (1998), 63-67.

Dates
First available in Project Euclid: 19 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.pja/1195509735

Digital Object Identifier
doi:10.3792/pjaa.74.63

Mathematical Reviews number (MathSciNet)
MR1626475

Zentralblatt MATH identifier
0921.11023

Citation

Nguyêñ, Quôć Thǎńg. Corestriction principle in non abelian Galois cohomology. Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), no. 4, 63--67. doi:10.3792/pjaa.74.63. https://projecteuclid.org/euclid.pja/1195509735


Export citation

References

  • [1] M. V. Borovoi: The algebraic fundamental group and abelian Galois cohomology of reductive algebraic groups. Preprint, Max-Plank Inst., MPI/ 89-90, Bonn, (1990); Memoirs of Amer. Math. Soc. (1998)(to appear).
  • [2] M. V. Borovoi: Abelianization of the second non-abelian Galois cohomology. Duke. Math. J., vol. 72, pp. 217-239 (1993).
  • [3] M. V. Borovoi: Non-abelian Galois hypercohomolo-gy. Preprint, Inst. Advanced Study, Princeton (1993).
  • [4] J.-L. Colliot-Thelene and J.-J. Sansuc: La R- equivalence sur les tores. Ann. Sc. E. N. S., t. 10, 175-230 (1976).
  • [5] P. Deligne: Varietes de Shimura: Interpretation modulaire et techniques de construction de modules canoniques. Proc. Sym. Pure Math. AMS, 33, Part 2, 247-289 (1979).
  • [6] P. Gille: i?-6quivalence et principe de norm en cohomologie galoisienne. C. R. Acad. Sci. Paris, t. 316, ser. I, 315-320 (1993).
  • [7] J. Giraud : Cohomologie non abSlienne. Springer-Verlag(1971).
  • [8] G. Harder: Uber die Galoiskohomologie der halbeinfacher Matrizengruppen. I. Math. Z., 90, 404-428 (1965); II. I. Math. Z., 92, 396-415 (1966).
  • [9] M. Kneser: Galois-Kohomologie halbeinfacher algebraischer Gruppen Uber p-adischen Korpern, II. Math. Z., 89, 250-272 (1965).
  • [10] H. W. Lenstra: K2 of global fields consists of synbols. Algebraic if-Theory. Lecture Notes in Math., vol. 551, Springer-Verlag, pp. 69-73 (1975).
  • [11] A. S. Merkurjev: A norm principle for algebraic groups. St. Petersburg Math. J., vol. 7, pp. 243-264 (1996).
  • [12] J. Milne: The points on a Shimura variety modulo a prime of good reduction. The Zeta Functions of Picard Modular Surfaces. CRM, Montreal, pp. 151-253 (1993).
  • [13] T. Ono: On relative Tamagawa numbers. Ann. Math., 82, 88-111 (1965).
  • [14] C. Riehm: The corestriction of algebraic structures. Invent. Math., 11, 73-98 (1970).
  • [15] S. Rosset and J. Tate: A reciprocity law for K2 Commen. Math. Helv., 58, 38-47 (1983).
  • [16] J.-P. Serre: Cohomologie galoisienne. Lecture Notes in Math., vol. 5, Springer Verlag, Fifth ed. (1994).
  • [17] J.-P. Serre: Cohomologie galoisienne: Progres et Problemes, Seminaire Bourbaki, 46eme an., 1993-94, no. 783, in Asterisque (Soc. Math. Fr.). t. 227, 229-257 (1995).
  • [18] W. Scharlau: Quadratic and Hermitian Forms. Springer-Verlag (1985).
  • [19] J. Tate: Relation between K2 and Galois cohomology. Inv. Math., vol. 36, pp. 257-274 (1976).
  • [20] Nguyen Q. Thang: On multiplicators of forms of types Dn. J. Fac. Sci. Univ. Tokyo Sec. IA, vol. 39, pp. 33-42 (1992).