Proceedings of the Japan Academy, Series A, Mathematical Sciences

On the rank of the elliptic curves with a rational point of order 6

Shoichi Kihara

Full-text: Open access

Abstract

We construct an infinite family of elliptic curves of rank at least 4 over Q with a rational point of order 6, which is parametrized by the rational points of an elliptic curve of rank at least 1.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 82, Number 7 (2006), 81-82.

Dates
First available in Project Euclid: 10 October 2006

Permanent link to this document
https://projecteuclid.org/euclid.pja/1160485501

Digital Object Identifier
doi:10.3792/pjaa.82.81

Mathematical Reviews number (MathSciNet)
MR2265603

Zentralblatt MATH identifier
1116.11038

Keywords
Elliptic curve rank

Citation

Kihara, Shoichi. On the rank of the elliptic curves with a rational point of order 6. Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 7, 81--82. doi:10.3792/pjaa.82.81. https://projecteuclid.org/euclid.pja/1160485501


Export citation

References

  • H. Cohen, PARI/GP. http://pari.math.u-bordeaux.fr/.
  • J. E. Cremona, mwrank and related programs for elliptic curves over Q. http://www.maths.nottingham.ac.uk/personal/jec/mwrank/.
  • O. Lecacheux: Rang de courbes elliptiques avec groupe de torsion non trivial, J. Théor. Nombers Bordeaux 15 (2003), 231–247.
  • B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129–162.
  • J. H. Silverman, The Arithmetic of Elliptic Curves, GTM 106, Springer-Verlag, New York, 1986.