Proceedings of the Japan Academy, Series A, Mathematical Sciences

Painlevé VI transcendents which are meromorphic at a fixed singularity

Kazuo Kaneko

Full-text: Open access

Abstract

We will study special solutions of the sixth Painlevé equation which are meromorphic at a fixed singularity. We will calculate the linear monodromy for our solutions. We will show the relation between Umemura's classical solutions and our solutions.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 82, Number 5 (2006), 71-76.

Dates
First available in Project Euclid: 1 June 2006

Permanent link to this document
https://projecteuclid.org/euclid.pja/1149166654

Digital Object Identifier
doi:10.3792/pjaa.82.71

Mathematical Reviews number (MathSciNet)
MR2228510

Zentralblatt MATH identifier
1134.33324

Subjects
Primary: 34M55: Painlevé and other special equations; classification, hierarchies;
Secondary: 33C15: Confluent hypergeometric functions, Whittaker functions, $_1F_1$

Keywords
The Painlevé equation monodromy data

Citation

Kaneko, Kazuo. Painlevé VI transcendents which are meromorphic at a fixed singularity. Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 5, 71--76. doi:10.3792/pjaa.82.71. https://projecteuclid.org/euclid.pja/1149166654


Export citation

References

  • R. Fuchs, Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen, Math. Ann. 63 (1907), no. 3, 301–321.
  • R. Fuchs, Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen, Math. Ann. 70 (1911), no. 4, 525–549.
  • K. Kaneko, A new solution of the fourth Painlevé equation with a solvable monodromy, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 5, 75–79.
  • K. Kaneko and Y. Ohyama, Fifth Painlevé transcendents which are analytic at the origin. (to appear).
  • M. Jimbo, Monodromy problem and the boundary condition for some Painlevé equations, Publ. Res. Inst. Math. Sci. 18 (1982), no. 3, 1137–1161.
  • A. V. Kitaev, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 187 (1991), Differentsialnaya Geom. Gruppy Li i Mekh. 12, 129–138, 173, 175; translation in J. Math. Sci. 73 (1995), no. 4, 494–499.
  • M. Mazzocco, Picard and Chazy solutions to the Painlevé VI equation, Math. Ann. 321 (2001), no. 1, 157–195.
  • K. Okamoto, Isomonodromic deformation and Painlevé equations, and the Garnier system, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), no. 3, 575–618.
  • E. Picard, Mémoire sur la théorie des functions algébriques de deux variables, Journal de Liouville 5 (1889), 135–319.
  • H. Umemura, Birational automorphism groups and differential equations, in Équations différentielles dans le champ complexe, Vol. II (Strasbourg, 1985), 119–227, Pub. Inst. Reach. Math. Av., Univ. Louis Pasteur, Strasbourg, 1988.