Proceedings of the Japan Academy, Series A, Mathematical Sciences

A note on the $\mathbf {Z}_p \times \mathbf {Z}_q$-extension over $\mathbf {Q}$

Kuniaki Horie

Full-text: Open access

Abstract

Let $S$ be a non-empty set of prime numbers; $1 \leq |S| \leq \infty$. Let $\mathbf{Q}^S$ denote the abelian extension of the rational field $\mathbf{Q}$ whose Galois group over $\mathbf{Q}$ is topologically isomorphic to the direct product of the additive groups of $l$-adic integers for all $l \in S$. In this note, we shall give simple examples of $S$ such that, for some $l \in S$, the Hilbert $l$-class field over $\mathbf{Q}^S$ is a nontrivial extension of $\mathbf{Q}^S$. Our results imply that, if $S$ contains 2, 3, 31, and 73, then there exists an unramified cyclic extension of degree $2263 = 31 \cdot 73$ over $\mathbf{Q}^S$.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 77, Number 6 (2001), 84-86.

Dates
First available in Project Euclid: 24 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.pja/1148479940

Digital Object Identifier
doi:10.3792/pjaa.77.84

Mathematical Reviews number (MathSciNet)
MR1842861

Zentralblatt MATH identifier
1005.11060

Subjects
Primary: 11R20: Other abelian and metabelian extensions
Secondary: 11R23: Iwasawa theory

Keywords
Hilbert class field Iwasawa theory

Citation

Horie, Kuniaki. A note on the $\mathbf {Z}_p \times \mathbf {Z}_q$-extension over $\mathbf {Q}$. Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 6, 84--86. doi:10.3792/pjaa.77.84. https://projecteuclid.org/euclid.pja/1148479940


Export citation

References

  • Brumer, A.: On the units of algebraic number fields. Mathematika, 14, 121–124 (1967).
  • Fukuda, T., and Komatsu, K.: On the $\lambda$ invariants of $\mathbf{Z}_p$-extensions of real quadratic fields. J. Number Theory, 23, 238–242 (1986).
  • Hasse, H.: Über die Klassenzahl abelscher Zahlkörper. Academie, Berlin (1952); Springer, Berlin (1985).
  • Hatada, K.: Mod $1$ distribution of Fermat and Fibonacci quotients and values of zeta functions at $2-p$. Comment. Math. Univ. St. Pauli, 36, 41–51 (1987).
  • Fröhlich, A.: On the absolute class-group of abelian fields. J. London Math. Soc., 29, 211–217 (1954).
  • Iwasawa, K.: A note on class numbers of algebraic number fields. Abh. Math. Sem. Univ. Hamburg, 20, 257–258 (1956).
  • Iwasawa, K.: On $\Gamma$-extensions of algebraic number fields. Bull. Amer. Math. Soc., 65, 183–226 (1959).
  • Taya, H.: On $p$-adic zeta functions and $\mathbf{Z}_p$-extensions of certain totally real number fields. Tohoku Math. J., 51, 21–33 (1999).