Proceedings of the Japan Academy, Series A, Mathematical Sciences

Bernstein degree of singular unitary highest weight representations of the metaplectic group

Kyo Nishiyama and Hiroyuki Ochiai

Full-text: Open access

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 75, Number 2 (1999), 9-11.

Dates
First available in Project Euclid: 23 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.pja/1148393986

Digital Object Identifier
doi:10.3792/pjaa.75.9

Mathematical Reviews number (MathSciNet)
MR1685908

Zentralblatt MATH identifier
0947.11020

Citation

Nishiyama, Kyo; Ochiai, Hiroyuki. Bernstein degree of singular unitary highest weight representations of the metaplectic group. Proc. Japan Acad. Ser. A Math. Sci. 75 (1999), no. 2, 9--11. doi:10.3792/pjaa.75.9. https://projecteuclid.org/euclid.pja/1148393986


Export citation

References

  • J. Faraut and A. Korányi: Analysis on symmetric cones. Oxford Univ. Press, New York (1994).
  • W. Fulton: Intersection theory. Springer, Berlin (1984).
  • G.Z. Giambelli: Sulle varietà rappresentate coll' annulare determinanti minori contenuti in un determinante simmetrico generico di forme. Atti R. Accad. Sci. Torino, 41, 102–125 (1906).
  • J. Harris and L.W. Tu: On symmetric and skew-symmetric determinantal varieties. Topology, 23, no. 1, 71–84 (1984).
  • R. Howe: Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. The Schur lectures (1992), Bar-Ilan Univ., Ramat Gan, Tel Aviv, pp. 1–182, (1995).
  • R. Howe: Remarks on classical invariant theory. Trans. Amer. Math. Soc., 313, no. 2, 539–570 (1989); Erratum. Trans. Amer. Math. Soc., 318, no. 2, 823 (1990).
  • M. Kashiwara and M. Vergne: On the Segal-Shale-Weil representations and harmonic polynomials. Invent. Math., 44, no. 1, 1–47 (1978).
  • M. Koecher: Über Dirichlet-Reihen mit Funktionalgleichung. J. reine angew. Math., 192, 1–23 (1953).
  • C.L. Siegel: Über die analytische Theorie der quadratischen Formen. Annals of Math., 36, 527–606 (1935).
  • D.A. Vogan, Jr.: Gel'fand-Kirillov dimension for Harish-Chandra modules. Invent. Math., 48, no. 1, 75–98 (1978).