Proceedings of the Japan Academy, Series A, Mathematical Sciences

On the Iwasawa $\lambda $-invariants of imaginary quadratic fields

Jangheon Oh

Full-text not supplied by publisher

Abstract

We investigate an easy way to compute the Iwasawa $\lambda$-invariant of imaginary quadratic fields and give some explicit examples.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 75, Number 3 (1999), 29-31.

Dates
First available in Project Euclid: 23 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.pja/1148393959

Digital Object Identifier
doi:10.3792/pjaa.75.29

Mathematical Reviews number (MathSciNet)
MR1700733

Zentralblatt MATH identifier
0938.11051

Subjects
Primary: 11R23: Iwasawa theory

Citation

Oh, Jangheon. On the Iwasawa $\lambda $-invariants of imaginary quadratic fields. Proc. Japan Acad. Ser. A Math. Sci. 75 (1999), no. 3, 29--31. doi:10.3792/pjaa.75.29. https://projecteuclid.org/euclid.pja/1148393959


Export citation

References

  • D.S. Dummit, D. Ford, H. Kisilevsky, and J.W. Sands: Computation of Iwasawa lambda invariants for imaginary quadratic fields. Journal of Number Theory, 37, 100–121 (1991).
  • T. Fukuda: Iwasawa $\lambda$-invariants of imaginary quadratic fields. J. of the College of Industrial Technology, Nihon Univ., 27, 35–86 (1994).
  • Y. Kida: The $\lambda$-invariants of $p$-adic measures on $\BZ_p$ and $1 + q\BZ_p$. Sci. Rep. Kanazawa Univ., 30, 33–38 (1986).
  • W. Sinnott: On the $\mu$-invariant of the $\Gamma$-transform of a rational function. Invent. Math., 75, 273–282 (1984).
  • L.C. Washington: Introduction to Cyclotomic Fields. GTM83, Springer-Verlag (1982).