Proceedings of the Japan Academy, Series A, Mathematical Sciences

Infinitesimal locally trivial deformation spaces of compact complex surfaces with ordinary singularities

Shoji Tsuboi

Full-text: Open access

Abstract

Let $S$ be a compact complex surface with ordinary singularities. We denote by $\Theta_S$ the sheaf of germs of holomorphic tangent vector fields on $S$. In this paper we shall give a description of the cohomology $H^1(S, \Theta_S)$, which is called the infinitesimal locally trivial deformation space of $S$, using a 2-cubic hyper-resolution of $S$ in the sense of F. Guillén, V. Navarro Aznar et al. ([1]). As a by-product, we shall show that the natural homomorphisim $H^1(S, \Theta_S)\rightarrow H^1(X, \Theta_X(-\log D_X))$ is injective under some condition, where $X$ is the (non-singular) normal model of $S$, $D_X$ the inverse image of the double curve $D_S$ of $S$ by the normalization map $f\colon X\rightarrow S$, and $\Theta_X(-\log D_X)$ the sheaf of germs of logarithmic tangent vector fields along $D_X$ on $X$. Note that the cohomology $H^1(X, \Theta_X(-\log D_X))$ is nothing but the infinitesimal locally trivial deformation space of a pair $(X, D_X)$.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 75, Number 7 (1999), 99-102.

Dates
First available in Project Euclid: 23 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.pja/1148393857

Digital Object Identifier
doi:10.3792/pjaa.75.99

Mathematical Reviews number (MathSciNet)
MR1729852

Zentralblatt MATH identifier
0964.32026

Citation

Tsuboi, Shoji. Infinitesimal locally trivial deformation spaces of compact complex surfaces with ordinary singularities. Proc. Japan Acad. Ser. A Math. Sci. 75 (1999), no. 7, 99--102. doi:10.3792/pjaa.75.99. https://projecteuclid.org/euclid.pja/1148393857


Export citation

References

  • F. Guillén, V. Navarro Aznar, P. Pascual-Gainza, and F. Puerta: Hyperrésolutions cubiques et descente cohomologique. Lecture Notes in Math., 1335, Springer, Berlin, pp. 1–192 (1988).
  • V. P. Paramodov: Tangent fields on deformations of complex spaces. Mathematics of USSR Sbornik, 71 no.1, 163–182 (1992) (English Translation).
  • S. Tsuboi: Cubic hyper-equisingular families of complex projective varieties, I, II. Proc. Japan Acad., 71A, 207–209; 210–212 (1995).
  • S. Tsuboi: Infinitesimal mixed Torelli problem for algebraic surfaces with ordinary singularities, I (preprint).
  • S. Tsuboi: Infinitesimal mixed Torelli problem for algebraic surfaces with ordinary singularities, II (in preparation).
  • J. J. Wavrik: Deformations of Banach coverings of complex manifolds. Amer. J. Math., 90, 926–960 (1968).