Proceedings of the Japan Academy, Series A, Mathematical Sciences

Trigonal modular curves $X_0^*(N)$

Yuji Hasegawa and Mahoro Shimura

Full-text: Open access

Abstract

For a positive integer $N$, let $X_0^*(N)$ denote the quotient curve of $X_0(N)$ by the Atkin-Lehmer involutions. In this paper, we determine the trigonality of $X_0^*(N)$ for all $N$. It turns out that there are seven values of $N$ for which $X_0^*(N)$ is a non-trivial trigonal curve.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 76, Number 6 (2000), 83-86.

Dates
First available in Project Euclid: 23 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.pja/1148393494

Digital Object Identifier
doi:10.3792/pjaa.76.83

Mathematical Reviews number (MathSciNet)
MR1769974

Zentralblatt MATH identifier
0973.11064

Subjects
Primary: 11F11: Holomorphic modular forms of integral weight
Secondary: 11F03: Modular and automorphic functions 11G30: Curves of arbitrary genus or genus = 1 over global fields [See also 14H25] 14E20: Coverings [See also 14H30] 14H25: Arithmetic ground fields [See also 11Dxx, 11G05, 14Gxx]

Keywords
Modular curve trigonal curve Atkin-Lehmer involution

Citation

Hasegawa, Yuji; Shimura, Mahoro. Trigonal modular curves $X_0^*(N)$. Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), no. 6, 83--86. doi:10.3792/pjaa.76.83. https://projecteuclid.org/euclid.pja/1148393494


Export citation

References

  • Arbarello, E., Cornalba, M., Griffiths, P. A., and Harris, J.: Geometry of Algebraic Curves, Vol.,I. Grundlehren Math. Wiss., 267, Springer, Berlin–Heidelberg–New York, pp.,1–386 (1985).
  • Atkin, A. O. L., and Lehner, J.: Hecke operators on $\Gamma_0(m)$. Math. Ann. 185, 134–160 (1970).
  • Hartshorne, R.: Algebraic Geometry. Grad. Texts in Math., 52, Springer, Berlin–Heidelberg–New York, pp.,1–496 (1977).
  • Hasegawa, Y.: Hyperelliptic modular curves $X_0^*(N)$. Acta Arith., 81, 369–385 (1997).
  • Hasegawa, Y., and Hashimoto, K.: Hyperelliptic modular curves $X_0^*(N)$ with square-free levels. Acta Arith., 77, 179–193 (1996).
  • Hasegawa, Y., and Shimura, M.: Trigonal modular curves. Acta Arith., 88, 129–140 (1999).
  • Hasegawa, Y., and Shimura, M.: Trigonal modular curves $X_0^{+d}(N)$. Proc. Japan Acad., 75A, 172–175 (1999).
  • Hijikata, H.: Explicit formula of the traces of Hecke operators for $\Gamma_0(N)$. J. Math. Soc. Japan, 26, 56–82 (1974). \interlinepenalty10000
  • Kleiman, S. L. and Laksov, D.: Another proof of the existence of special divisors. Acta Math.,132, 163–176 (1974).
  • Nguyen, K. V., and Saito, M.-H.: D-gonality of modular curves and bounding torsions (preprint).
  • Ogg, A. P.: Hyperelliptic modular curves. Bull. Soc. Math. France, 102, 449–462 (1974).
  • Shimura, M.: Defining equations of modular curves $X_0(N)$. Tokyo J. Math., 18, 443–456 (1995).
  • Yamauchi, M.: On the traces of Hecke operators for a normalizer of $\Gamma_0(N)$. J. Math. Kyoto Univ., 13, 403–411 (1973).
  • Zograf, P. G.: Small eigenvalues of automorphic Laplacians in spaces of cusp forms (Russian) Automorphic functions and number theory, II. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI), 134, 157–168 (1984).