Proceedings of the Japan Academy, Series A, Mathematical Sciences

Ichimura-Sumida criterion for Iwasawa $\lambda $-invariants

Takashi Fukuda and Keiichi Komatsu

Full-text: Open access


For an odd prime number $p$ and real abelian number fields $k$ with the degree $[k : \mathbf{Q}] = p$ in which $p$ splits completely, we give a criterion for vanishing of Iwasawa $\lambda$-invariants.

Article information

Proc. Japan Acad. Ser. A Math. Sci., Volume 76, Number 7 (2000), 111-115.

First available in Project Euclid: 23 May 2006

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11R23: Iwasawa theory 11R27: Units and factorization 11Y40: Algebraic number theory computations

Iwasawa invariant cyclotomic unit cubic field


Fukuda, Takashi; Komatsu, Keiichi. Ichimura-Sumida criterion for Iwasawa $\lambda $-invariants. Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), no. 7, 111--115. doi:10.3792/pjaa.76.111.

Export citation


  • Fukuda, T., and Komatsu, K.: On Iwasawa $\lambda_3$-invariants of cyclic cubic fields of prime conductor. Math. Comp. (to appear).
  • Gillard, R.: Unites cyclotomiques, unites semi locales et $\textbf{Z}_p$-extensions II. Ann. Inst. Fourier, 29, 1–15 (1979).
  • Ichimura, H., and Sumida, H.: On the Iwasawa Invariants of certain real abelian fields II. Inter. J. Math., 7, 721–744 (1996).
  • Kida, Y.: $\ell$-extensions of $CM$-fields and cyclotomic invariants. J. Number Theory, 12, 519–528 (1980).
  • Kraft, J. S., and Schoof, R.: Computing Iwasawa modules of real quadratic number fields. Compositio Math., 97, 135–155 (1995).
  • Kurihara, M.: The Iwasawa $\lambda$-invariants of real abelian fields. Tokyo J. Math., 22, 259–277 (1999).
  • Lang, S.: Algebraic Number Theory. Graduate Texts in Math., vol. 110, Springer, Berlin-Heidelberg-New York (1994).
  • Ozaki, M., and Yamamoto, G.: Iwasawa $\lambda_3$-invariants of certain cubic fields. Acta Arith. (to appear).
  • Tsuji, T.: Semi-local unites modulo cyclotomic units. J. Number Theoey, 78, 1–26 (1999).
  • Washington, L.: Introduction of Cyclotomic Fields. Graduate Texts in Math., vol. 83, Springer, Berlin-Heidelberg-New York (1982).