Proceedings of the Japan Academy, Series A, Mathematical Sciences

Greenberg's conjecture and Leopoldt's conjecture

Norikazu Kubotera

Full-text: Open access


Let $p$ be an odd prime number. We show that the Iwasawa invariants of a certain non-abelian $p$-extension fields of $\mathbf{Q}$ vanish. And we construct non-abelian $p$-extensions over some imaginary quadratic fields satisfying Leopoldt's conjecture on the $p$-adic regulator.

Article information

Proc. Japan Acad. Ser. A Math. Sci., Volume 76, Number 7 (2000), 108-110.

First available in Project Euclid: 23 May 2006

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11R23: Iwasawa theory 11R27: Units and factorization

The Iwasawa invariants Leopoldt's conjecture embedding problems


Kubotera, Norikazu. Greenberg's conjecture and Leopoldt's conjecture. Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), no. 7, 108--110. doi:10.3792/pjaa.76.108.

Export citation


  • Ax, J.: On the units of an algebraic number field. Illinois J. Math., 9, 584–589 (1965).
  • Brumer, A.: On the units of algebraic number fields. Mathematika, 14, 121–124 (1967).
  • Greenberg, R.: On the Iwasawa invariants of totally real number fields. Amer. J. Math., 98, 263–284 (1976).
  • Iwasawa, K.: A note on class numbers of algebraic number fields. Abh. Math. Sem. Univ. Hamburg, 20, 257–258 (1956).
  • Komatsu, K.: On the Iwasawa $\lambda$-invariants of quaternion extensions. Acta Arith., 87, 219–221 (1999).
  • Leopoldt, H. W.: Zur Arithmetik in abelschen Zahlkörpern. J. Reine. Angew. Math., 209, 54–71 (1962).
  • Miki, H.: On the Leopoldt conjecture on the $p$-adic regulators. J. Number Theory, 26, 117–128 (1987).
  • Miyake, K.: On the units of an algebraic number field. J. Math. Soc. Japan, 34, 515–525 (1982).
  • Neukirch, J.: Über das Einbettungsproblem der algebraischen Zahlentheorie. Invent. Math., 21, 59–116 (1973).
  • Nomura, A.: On the class numbers of certain Hilbert class fields. Manuscripta Math., 79, 379–390 (1993).
  • Shafarevich, I. R.: On $p$-extensions. Mat. Sb. (N.S.), 20(62), 351–363 (1947); Amer. Math. Soc. Transl. Ser. 2, 4, 59–72 (1956) (English transl.).