Proceedings of the Japan Academy, Series A, Mathematical Sciences

Homotopy groups of the homogeneous spaces $F_4/G_2$, $F_4/\mathrm {Spin}(9)$ and $E_6/F_4$

Yoshihiro Hirato, Hideyuki Kachi, and Mamoru Nimura

Full-text: Open access

Abstract

In this paper we calculate 2-primary components of homotopy groups of the homogeneous spaces $F_4/G_2$, $F_4/\mathrm{Spin}(9)$ and $E_6/F_4$.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 77, Number 1 (2001), 16-19.

Dates
First available in Project Euclid: 23 May 2006

Permanent link to this document
https://projecteuclid.org/euclid.pja/1148393142

Digital Object Identifier
doi:10.3792/pjaa.77.16

Mathematical Reviews number (MathSciNet)
MR1812742

Zentralblatt MATH identifier
0998.55006

Subjects
Primary: 55Q52: Homotopy groups of special spaces
Secondary: 57T20: Homotopy groups of topological groups and homogeneous spaces

Keywords
Homotopy group homogeneous space exceptional Lie group

Citation

Hirato, Yoshihiro; Kachi, Hideyuki; Nimura, Mamoru. Homotopy groups of the homogeneous spaces $F_4/G_2$, $F_4/\mathrm {Spin}(9)$ and $E_6/F_4$. Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 1, 16--19. doi:10.3792/pjaa.77.16. https://projecteuclid.org/euclid.pja/1148393142


Export citation

References

  • Davis, D.M., and Mahowald, M.: Three contribu-tions to the homotopy theory of the exceptional Lie groups $G_2$ and $F_4$. J. Math. Soc. Japan, 43, 661–671 (1991).
  • Hirato, Y.: Homotopy groups of $F_4/G_2$. Master's thesis of Shinshu Univ. (1996) (in Japanese).
  • Hirato, Y., and Mukai, J.: Some Toda bracket in $\pi_{26}^S(S^0)$. J. Math. Okayama Univ. (to appear).
  • Mimura, M.: On the generalized Hopf homomorphism and the higher composition, Part I. J. Math. Kyoto Univ., 4, 171–190 (1964).
  • Mimura, M.: On the generalized Hopf homomor-phism and the higher composition, Part II. J. Math. Kyoto Univ. 4, 301–326 (1965).
  • Mimura, M.: The Homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ., 6, 131–176 (1967).
  • Mimura, M., Mori, M., and Oda, N.: Determi-nation of 2-components of the 23 and 24-stems in homotopy groups of spheres. Mem. Fac. Sci. Kyushu Univ. Ser. A, 29, 1–42 (1975).
  • Mimura, M., and Toda, H.: Homotopy groups of $SU$ (3), $SU$ (4) and $Sp$ (2). J. Math. Kyoto Univ., 3, 217–250 (1964).
  • Mimura, M., and Toda, H.: The ($n+20$)-th homo-topy groups of $n$-spheres. J. Math. Kyoto Univ., 3, 37–58 (1963).
  • Mukai, J.: On the stable homotopy of a $\mathbf{Z}_2$-Moore space, Osaka J. Math., 6, 63–91 (1969).
  • Oda, N.: On the 2-components of the unstable ho-motopy groups of spheres. II. Proc. Japan Acad., 53A, 215–218 (1977).
  • Oda, N.: Unstable homotopy groups of spheres. Bull. Inst. Adv. Res. Fukuoka Univ., 44, 49–152 (1979).
  • Oda, N.: Some Toda brackets and the relations of H.Ōshima in the homotopy groups of spheres. Fukuoka Univ. Sei. Rep., 15, 5–11 (1985).
  • Toda, H.: Composition Methods in Homotopy Groups of Spheres. Ann. of Math. Studies, no. 49, Princeton (1962).