Proceedings of the Japan Academy, Series A, Mathematical Sciences

A note on Ono's numbers associated to imaginary quadratic fields

Fumio Sairaiji and Kenichi Shimizu

Full-text: Open access


T. Ono raised some problems on relations between Ono's numbers $p_D$ and the class numbers $h_D$ of imaginary quadratic fields. In this paper we give an upper bound for $p_D$. The upper bound contributes to one of the problems.

Article information

Proc. Japan Acad. Ser. A Math. Sci., Volume 77, Number 2 (2001), 29-31.

First available in Project Euclid: 23 May 2006

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11R11: Quadratic extensions
Secondary: 11R29: Class numbers, class groups, discriminants

Ono's number class number


Sairaiji, Fumio; Shimizu, Kenichi. A note on Ono's numbers associated to imaginary quadratic fields. Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 2, 29--31. doi:10.3792/pjaa.77.29.

Export citation


  • Ishibashi, M.: A sufficient arithmetical condition for the ideal class group of an imaginary quadratic field to be cyclic. Proc. Amer. Math. Soc., 117, 613–618 (1993).
  • Möller, H.: Verallgemeinerung eines Satzes von Rabinowitsch über imaginär-quadratische Zahlkörper. J. Reine Angew. Math., 285, 100–113 (1976).
  • Ono, T.: Arithmetic of Algebraic Groups and its Applications. St. Paul's International Exchange Series Occasional Papers VI, St. Paul's Univ., Tokyo (1986).
  • Rabinowitsch, G.: Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern. J. Reine Angew. Math., 142, 153–164 (1913).
  • Sasaki, R.: On a lower bound for the class number of an imaginary quadratic field. Proc. Japan Acad., 62A, 37–39 (1986).
  • Siegel, C. L.: Über die Classenzahl quadratischer Zahlkörper. Acta Arith., 1, 83–86 (1935).
  • Svirsky, J. B.: On the class numbers of imaginary quadratic fields. Ph. D. thesis, Johns Hopkins Univ. (1985).