Proceedings of the Japan Academy, Series A, Mathematical Sciences

Values of absolute tensor products

Nobushige Kurokawa

Full-text: Open access

Abstract

We study values of absolute tensor products (multiple zeta functions) at integral arguments. We obtain a simple formula for the absolute value of the double sine function. We express values of the multiple gamma function related to the functional equation.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 81, Number 10 (2005), 185-190.

Dates
First available in Project Euclid: 28 December 2005

Permanent link to this document
https://projecteuclid.org/euclid.pja/1135791772

Digital Object Identifier
doi:10.3792/pjaa.81.185

Mathematical Reviews number (MathSciNet)
MR2196725

Zentralblatt MATH identifier
1141.11317

Subjects
Primary: 11M06: $\zeta (s)$ and $L(s, \chi)$

Keywords
Absolute tensor product multiple zeta function multiple sine function multiple gamma function

Citation

Kurokawa, Nobushige. Values of absolute tensor products. Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 10, 185--190. doi:10.3792/pjaa.81.185. https://projecteuclid.org/euclid.pja/1135791772


Export citation

References

  • E. W. Barnes, On the theory of the multiple gamma function, Trans. Cambridge Philos. Soc., 19 (1904), 374–425.
  • N. Kurokawa, Multiple zeta functions: an example, in Zeta functions in geometry (Tokyo, 1990), 219–226, Adv. Stud. Pure Math., 21, Kinokuniya, Tokyo.
  • N. Kurokawa, Derivatives of multiple sine functions, Proc. Japan Acad., 80A (2004), no. 5, 65–69.
  • N. Kurokawa, Zeta functions over $\mathbf{F}_1$, Proc. Japan Acad., 81A (2005), no. 10, 180–184.
  • N. Kurokawa and S. Koyama, Multiple sine functions, Forum Math. 15 (2003), no. 6, 839–876.
  • S. Koyama and N. Kurokawa, Kummer's formula for multiple gamma functions, J. Ramanujan Math. Soc. 18 (2003), no. 1, 87–107.
  • S. Koyama and N. Kurokawa, Multiple zeta functions: the double sine function and the signed double Poisson summation formula, Compos. Math. 140 (2004), no. 5, 1176–1190.
  • S. Koyama and N. Kurokawa, Multiple Euler Products, Proceedings of the St. Petersburg Math. Soc. 11 (2005) 123–166. (In Russian; The English version to be published from the American Math. Soc.).
  • S. Koyama and N. Kurokawa, Values of multiple zeta functions. (In preparation).
  • N. Kurokawa, H. Ochiai and M. Wakayama, Absolute derivations and zeta functions, Doc. Math. 2003, Extra Vol., 565–584 (electronic).
  • S. Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic $K$-theory, in Algebraic $K$-theory, II: “Classicalalgebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), 489–501. Lecture Notes in Math., 342, Springer, Berlin.
  • Yu. I. Manin, Lectures on zeta functions and motives (according to Deninger and Kurokawa), Astérisque No. 228 (1995), 4, 121–163.
  • Yu. I. Manin, The notion of dimension in geometry and algebra, (2005). (Preprint). math.AG/0502016.
  • D. Quillen, On the cohomology and $K$-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552–586.
  • C. Soulé, Les variétés sur le corps à un élément, Mosc. Math. J. 4 (2004), no. 1, 217–244, 312.