Open Access
Sept. 2004 On class number formula for the real quadratic fields
Hiroki Sato
Proc. Japan Acad. Ser. A Math. Sci. 80(7): 129-130 (Sept. 2004). DOI: 10.3792/pjaa.80.129

Abstract

Let $k > 1$ be the fundamental discriminant, and let $\chi(n)$, $\varepsilon$ and $h$ be the real primitive character modulo $k$, the fundamental unit and the class number of the real quadratic field $\mathbf{Q}(\sqrt{k} )$, respectively. And let $[x]$ denote the greatest integer not greater than $x$.

In [3], M.-G. Leu showed $h = \big[ \sqrt{k} / (2\log{\varepsilon}) \sum_{n=1}^k \chi(n) / n \big] + 1$ for all $k$, and $h = \big[ \sqrt{k} / (2\log{\varepsilon}) \sum_{n=1}^{[k/2]} \chi(n) / n \big]$ in the case $k \neq m^2 + 4$ with $m \in \mathbf{Z}$.

In this paper we will show $h = \big[ \sqrt{k} / (2\log{\varepsilon}) \sum_{n=1}^{[k/2]} \chi(n) / n \big]$ for all fundamental discriminants $k > 1$.

Citation

Download Citation

Hiroki Sato. "On class number formula for the real quadratic fields." Proc. Japan Acad. Ser. A Math. Sci. 80 (7) 129 - 130, Sept. 2004. https://doi.org/10.3792/pjaa.80.129

Information

Published: Sept. 2004
First available in Project Euclid: 18 May 2005

zbMATH: 1068.11072
MathSciNet: MR2094533
Digital Object Identifier: 10.3792/pjaa.80.129

Subjects:
Primary: 11R11
Secondary: 11M06

Keywords: Class number , real quadratic fields

Rights: Copyright © 2004 The Japan Academy

Vol.80 • No. 7 • Sept. 2004
Back to Top