Proceedings of the Japan Academy, Series A, Mathematical Sciences

A note on the mean value of the zeta and $L$-functions. XIV

Yoichi Motohashi

Full-text: Open access

Abstract

The aim of the present note is to develop a study on the feasibility of a unified theory of mean values of automorphic $L$-functions, a desideratum in the field. This is an outcome of the investigation commenced with the part XII ([14]), where a framework was laid on the basis of the theory of automorphic representations, and a general approach to the mean values was envisaged. Specifically, it is shown here that the inner-product method, which was initiated by A. Good [7] and greatly enhanced by M. Jutila [9], ought to be brought to perfection so that the mean square of the $L$-function attached to any cusp form on the upper half-plane could be reached within the notion of automorphy. The Kirillov map is our key implement. Because of its geometric nature, our method appears to extend to bigger linear Lie groups. This note is essentially self-contained.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 80, Number 4 (2004), 28-33.

Dates
First available in Project Euclid: 18 May 2005

Permanent link to this document
https://projecteuclid.org/euclid.pja/1116442213

Digital Object Identifier
doi:10.3792/pjaa.80.28

Mathematical Reviews number (MathSciNet)
MR2055073

Zentralblatt MATH identifier
1052.11035

Subjects
Primary: 11F70: Representation-theoretic methods; automorphic representations over local and global fields

Keywords
Mean values of automorphic $L$-functions automorphic representations of linear Lie groups Kirillov map

Citation

Motohashi, Yoichi. A note on the mean value of the zeta and $L$-functions. XIV. Proc. Japan Acad. Ser. A Math. Sci. 80 (2004), no. 4, 28--33. doi:10.3792/pjaa.80.28. https://projecteuclid.org/euclid.pja/1116442213


Export citation

References

  • Bruggeman, R. W., and Motohashi, Y.: A note on the mean value of the zeta and $L$-functions, X. Proc. Japan Acad., 77A, 111–114 (2001).
  • Bruggeman, R. W., and Motohashi, Y.: A note on the mean value of the zeta and $L$-functions, XIII. Proc. Japan Acad., 78A, 87–91 (2002).
  • Bruggeman, R. W., and Motohashi, Y.: Sum formula for Kloosterman sums and the fourth moment of the Dedekind zeta-function over the Gaussian number field. Functiones et Approximatio, 31, 7–76 (2003).
  • Bruggeman, R. W., and Motohashi, Y.: A new approach to the spectral theory of the fourth moment of the Riemann zeta-function. (To appear in J. Reine Angew. Math.).
  • Bump, D.: Automorphic Forms on $\rm{SL}(3,\mathbf{R})$. Lecture Notes in Math., vol. 1083, Springer-Verlag, Berlin, pp. 1–184 (1984).
  • Cogdell, J. W., and Piatetski-Shapiro, I.: The Arithmetic and Spectral Analysis of Poincaré Series. Academic Press, San Diego, pp. 1–192 (1990).
  • Good, A.: Beitraege zur Theorie der Dirichletreihen die Spitzenformen zugeordenet sind. J. Number Theory, 13, 18–65 (1981).
  • Gradshteyn, I. S., and Ryzhik, I. M.: Tables of Integrals, Series and Products. Academic Press, San Diego, pp. 1–1160 (1979).
  • Jutila, M.: Mean values of Dirichlet series via Laplace transforms. Analytic Number Theory, Proc. 39th Taniguchi Intern. Symp. Math., Kyoto 1996 (ed. Motohashi, Y.). Cambridge Univ. Press, Cambridge, pp. 169–207 (1997).
  • Kirillov, A. A.: On $\infty$-dimensional unitary representations of the group of second-order matrices with elements from a locally compact field. Soviet Math. Dokl., 4, 748–752 (1963).
  • Motohashi, Y.: The fourth power mean of the Riemann zeta-function. Proc. Conf. Analytic Number Theory, Amalfi 1989 (eds. Bombieri, E., Perelli, A., Salerno, S., and Zannier, U.). Univ. Salerno, Salerno, pp. 325–344 (1992).
  • Motohashi, Y.: The mean square of Hecke $L$-series attached to holomorphic cusp-forms. RIMS Kokyuroku, 886, 214–227 (1994).
  • Motohashi, Y.: Spectral Theory of the Riemann Zeta-Function. Cambridge Univ. Press, Cambridge, pp. 1–228 (1997).
  • Motohashi, Y.: A note on the mean value of the zeta and $L$-functions, XII. Proc. Japan Acad., 78A, 36–41 (2002).