Proceedings of the Japan Academy, Series A, Mathematical Sciences

The gradient maps associated to certain non-homogeneous cones

Hideyuki Ishi

Full-text: Open access

Abstract

The gradient map associated to a regular open convex cone gives a diffeomorphism from the cone onto its dual cone. If the cone is homogeneous, the inverse of the map is known to be equal to the gradient map associated to the dual cone. However, we show that this is no longer true for a general case by presenting a simple counterexample.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci., Volume 81, Number 3 (2005), 44-46.

Dates
First available in Project Euclid: 18 May 2005

Permanent link to this document
https://projecteuclid.org/euclid.pja/1116442035

Digital Object Identifier
doi:10.3792/pjaa.81.44

Mathematical Reviews number (MathSciNet)
MR2128930

Zentralblatt MATH identifier
1086.52501

Subjects
Primary: 52A20: Convex sets in n dimensions (including convex hypersurfaces) [See also 53A07, 53C45] 53A15: Affine differential geometry 52A15: Convex sets in 3 dimensions (including convex surfaces) [See also 53A05, 53C45]

Keywords
Regular open convex cone dual cone gradient map

Citation

Ishi, Hideyuki. The gradient maps associated to certain non-homogeneous cones. Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 3, 44--46. doi:10.3792/pjaa.81.44. https://projecteuclid.org/euclid.pja/1116442035


Export citation

References

  • J. Dorfmeister and M. Koecher, Reguläre Kegel, Jahresber. Deutsch. Math.-Verein. 81 (1978/79), no. 3, 109–151.
  • J. Faraut and A. Korányi, Analysis on symmetric cones, Oxford Univ. Press, New York, 1994.
  • T. Nomura, Family of Cayley transforms of a homogeneous Siegel domain parametrized by admissible linear forms, Differential Geom. Appl. 18 (2003), no. 1, 55–78.
  • È. B. Vinberg, The theory of homogeneous convex cones, Trans. Moscow Math. Soc. 12 (1963), 340–403.