Proceedings of the International Conference on Geometry, Integrability and Quantization

Classical and Quantization Problems in Degenerate Affine Motion

Jan J. Sławianowski and Eva E. Rożko

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Discussed are classical and quantized models of affinely rigid motion with degenerate dimension, i.e., such ones that the geometric dimensions of the material and physical spaces need not be equal to each other. More precisely, the material space may have dimension lower than the physical space. Physically interesting are special cases $m=2$ or $m=1$ and $n=3$, first of all $m=2$, $n=3$, i.e., roughly speaking, the affinely deformable coin in three--dimensional Euclidean space. We introduce some special coordinate systems generalizing the polar and two--polar decompositions in the regular case. This enables us to reduce the dynamics to two degrees of freedom. In quantum case this is the reduction of the Schrödinger equation to multicomponent wave functions of two deformation invariants.

Article information

Source
Proceedings of the Sixteenth International Conference on Geometry, Integrability and Quantization, Ivaïlo M. Mladenov, Andrei Ludu and Akira Yoshioka, eds. (Sofia: Avangard Prima, 2015), 139-163

Dates
First available in Project Euclid: 13 July 2015

Permanent link to this document
https://projecteuclid.org/ euclid.pgiq/1436815740

Digital Object Identifier
doi:10.7546/giq-16-2015-139-163

Mathematical Reviews number (MathSciNet)
MR3363841

Zentralblatt MATH identifier
1370.37144

Citation

Sławianowski, Jan J.; Rożko, Eva E. Classical and Quantization Problems in Degenerate Affine Motion. Proceedings of the Sixteenth International Conference on Geometry, Integrability and Quantization, 139--163, Avangard Prima, Sofia, Bulgaria, 2015. doi:10.7546/giq-16-2015-139-163. https://projecteuclid.org/euclid.pgiq/1436815740


Export citation