Proceedings of the International Conference on Geometry, Integrability and Quantization

Solution of the Dirac Equation for the Q-Deformed Manning-Rosen Potential

Neda Hatami, Somaye Ahmadi, and Mohammad R. Setare

Abstract

Approximate solution for the Dirac equation with the $q$-deformed Manning-Rosen potential, under the condition of spin and pseudospin symmetry are obtained. Also the energy spectrum and wave functions are obtained by the Nikiforov-Uvarov (NU) method. The special cases $q=1$, Hulthén potential $ (b\rightarrow0)$ and the nonrelativistic limit are studied for the $q$-deformed Manning-Rosen potential, and then results are compared with the other works.

Article information

Source
Proceedings of the Fifteenth International Conference on Geometry, Integrability and Quantization, Ivaïlo M. Mladenov, Andrei Ludu and Akira Yoshioka, eds. (Sofia: Avangard Prima, 2014), 140-151

Dates
First available in Project Euclid: 13 July 2015

Permanent link to this document
https://projecteuclid.org/ euclid.pgiq/1436815707

Digital Object Identifier
doi:10.7546/giq-15-2014-140-151

Mathematical Reviews number (MathSciNet)
MR3287754

Zentralblatt MATH identifier
1315.35181

Citation

Hatami, Neda; Ahmadi, Somaye; Setare, Mohammad R. Solution of the Dirac Equation for the Q-Deformed Manning-Rosen Potential. Proceedings of the Fifteenth International Conference on Geometry, Integrability and Quantization, 140--151, Avangard Prima, Sofia, Bulgaria, 2014. doi:10.7546/giq-15-2014-140-151. https://projecteuclid.org/euclid.pgiq/1436815707


Export citation