Proceedings of the International Conference on Geometry, Integrability and Quantization

Quadratic Hamilton-Poisson Systems on $\mathfrak{so}^*_{-}(3)$: Classification and Integration

Ross M. Adams, Rory Biggs, and Claudiu C. Remsing

Abstract

We classify, under affine equivalence, the quadratic Hamilton-Poisson systems on the Lie-Poisson space $\mathfrak{so}^*_{-}(3)$. For the simplest strictly inhomogeneous quadratic system, we find explicit expressions for the integral curves in terms of Jacobi elliptic functions.

Article information

Source
Proceedings of the Fifteenth International Conference on Geometry, Integrability and Quantization, Ivaïlo M. Mladenov, Andrei Ludu and Akira Yoshioka, eds. (Sofia: Avangard Prima, 2014), 55-66

Dates
First available in Project Euclid: 13 July 2015

Permanent link to this document
https://projecteuclid.org/ euclid.pgiq/1436815701

Digital Object Identifier
doi:10.7546/giq-15-2014-55-66

Mathematical Reviews number (MathSciNet)
MR3287748

Zentralblatt MATH identifier
1315.37030

Citation

Adams, Ross M.; Biggs, Rory; Remsing, Claudiu C. Quadratic Hamilton-Poisson Systems on $\mathfrak{so}^*_{-}(3)$: Classification and Integration. Proceedings of the Fifteenth International Conference on Geometry, Integrability and Quantization, 55--66, Avangard Prima, Sofia, Bulgaria, 2014. doi:10.7546/giq-15-2014-55-66. https://projecteuclid.org/euclid.pgiq/1436815701


Export citation