Proceedings of the International Conference on Geometry, Integrability and Quantization

On Multicomponent Derivative Nonlinear Schrödinger Equation Related to Symmetric Spaces

Tihomir I. Valchev

Abstract

We study derivative nonlinear Schrödinger equations related to symmetric spaces of the type A.III. We discuss the spectral properties of the corresponding Lax operator and develop the direct scattering problem connected to it. By applying an appropriately chosen dressing factor we derive soliton solutions to the nonlinear equation. We find the integrals of motion by using the method of diagonalization of Lax pair.

Article information

Source
Proceedings of the Fourteenth International Conference on Geometry, Integrability and Quantization, Ivaïlo M. Mladenov, Andrei Ludu and Akira Yoshioka, eds. (Sofia: Avangard Prima, 2013), 215-226

Dates
First available in Project Euclid: 13 July 2015

Permanent link to this document
https://projecteuclid.org/ euclid.pgiq/1436795023

Digital Object Identifier
doi:10.7546/giq-14-2013-215-226

Mathematical Reviews number (MathSciNet)
MR3183941

Zentralblatt MATH identifier
1382.81093

Citation

Valchev, Tihomir I. On Multicomponent Derivative Nonlinear Schrödinger Equation Related to Symmetric Spaces. Proceedings of the Fourteenth International Conference on Geometry, Integrability and Quantization, 215--226, Avangard Prima, Sofia, Bulgaria, 2013. doi:10.7546/giq-14-2013-215-226. https://projecteuclid.org/euclid.pgiq/1436795023


Export citation