Proceedings of the International Conference on Geometry, Integrability and Quantization

On the Geometry of Biharmonic Submanifolds in Sasakian Space Forms

Dorel Fetcu and Cezar Oniciuc

Abstract

We classify all proper-biharmonic Legendre curves in a Sasakian space form and point out some of their geometric properties. Then we provide a method for constructing anti-invariant proper-biharmonic submanifolds in Sasakian space forms. Finally, using the Boothby-Wang fibration, we determine all proper-biharmonic Hopf cylinders over homogeneous real hypersurfaces in complex projective spaces.

Article information

Source
Proceedings of the Tenth International Conference on Geometry, Integrability and Quantization, Ivaïlo M. Mladenov, Gaetano Vilasi and Akira Yoshioka, eds. (Sofia: Avangard Prima, 2009), 171-182

Dates
First available in Project Euclid: 13 July 2015

Permanent link to this document
https://projecteuclid.org/ euclid.pgiq/1436793443

Digital Object Identifier
doi:10.7546/giq-10-2009-171-182

Mathematical Reviews number (MathSciNet)
MR2757833

Zentralblatt MATH identifier
1181.31003

Citation

Fetcu, Dorel; Oniciuc, Cezar. On the Geometry of Biharmonic Submanifolds in Sasakian Space Forms. Proceedings of the Tenth International Conference on Geometry, Integrability and Quantization, 171--182, Avangard Prima, Sofia, Bulgaria, 2009. doi:10.7546/giq-10-2009-171-182. https://projecteuclid.org/euclid.pgiq/1436793443


Export citation