Osaka Journal of Mathematics

Semistable fibrations over an elliptic curve with only one singular fibre

Abel Castorena, Margarida Mendes Lopes, and Gian Pietro Pirola

Full-text: Open access

Abstract

In this work we describe a construction of semistable fibrations over an elliptic curve with one unique singular fibre and we give effective examples using monodromy of curves.

Article information

Source
Osaka J. Math., Volume 57, Number 1 (2020), 9-15.

Dates
First available in Project Euclid: 15 January 2020

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1579079108

Mathematical Reviews number (MathSciNet)
MR4052625

Subjects
Primary: 14H10: Families, moduli (algebraic) 14D06: Fibrations, degenerations
Secondary: 14C20: Divisors, linear systems, invertible sheaves 14J29: Surfaces of general type

Citation

Castorena, Abel; Mendes Lopes, Margarida; Pirola, Gian Pietro. Semistable fibrations over an elliptic curve with only one singular fibre. Osaka J. Math. 57 (2020), no. 1, 9--15. https://projecteuclid.org/euclid.ojm/1579079108


Export citation

References

  • A. Beauville: Le nombre minimum de fibres singuliéres d'un courbe stable sur $\mathbb P^1$; in Séminaire sur les pinceaux de courbes de genre au moins deux, (L. Szpiro, ed.), Astérisque 86 (1981), 97–108.
  • A. Beauville: L'inégalité $p_g\geqslant2q-4$ pour les surfaces de type général, Appendix to [6], Bull. Soc. Math. de France 110 (1982), 343–346.
  • A. Beauville: The Szpiro inequality for higher genus fibrations; in Algebraic Geometry (a volume in memory of Paolo Francia), de Gruyter, Berlin, 61–63, 2002.
  • F. Catanese: Kodaira fibrations and beyond: methods for moduli theory, Jpn. J. Math. 12 (2017), 91–174.
  • F. Catanese and C. Ciliberto: Surfaces with $p_g=q=1$; in “Problems in the Theory of Surfaces and their Classification”, Cortona, 1988, Symposia Math. 32 (1992), 49–79.
  • O. Debarre: Inégalités numériques pour les surfaces de type général, Bull. Soc. Math. de France 110 (1982), 319–342.
  • H. Ishida: Catanese-Ciliberto surfaces of fiber genus three with unique singular fiber, Tohoku Math. J. (2) 58 (2006), 33–69.
  • R. Miranda: Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics, Vol. 5, American Mathematical Society, Providence, R1.1995.
  • A.N. Parsin: Algebraic curves over function fields. I, Izv. Akad. Nauk. SSSR. Ser. Mat. 32 (1968), 1191–1219.
  • L. Szpiro: Propriétés numériques du faisceau dualizant relatif; in Séminaire sur les pinceaux de courbes de genre au moins deux, (L. Szpiro, ed.), Astérisque 86 (1981), 44–78.
  • S-L. Tan: The minimal number of singular fibres of a semistable curve over $\mathbb P^1$, Journal of Algebraic Geometry 4 (1995), 591–596.