Osaka Journal of Mathematics

Homotopy groups of certain highly connected manifolds via loop space homology

Samik Basu and Somnath Basu

Full-text: Open access

Abstract

For $n\geq 2$ we consider $(n-1)$-connected closed manifolds of dimension at most $(3n-2)$. We prove that away from a finite set of primes, the $p$-local homotopy groups of $M$ are determined by the dimension of the space of indecomposable elements in the cohomology ring $H^\ast(M; \mathbb{Q})$. Moreover, we show that these $p$-local homotopy groups can be expressed as a direct sum of $p$-local homotopy groups of spheres. This generalizes some of the results of our earlier work [1].

Article information

Source
Osaka J. Math., Volume 56, Number 2 (2019), 417-430.

Dates
First available in Project Euclid: 3 April 2019

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1554278431

Mathematical Reviews number (MathSciNet)
MR3934982

Zentralblatt MATH identifier
07080091

Subjects
Primary: 55P35: Loop spaces 55Q52: Homotopy groups of special spaces
Secondary: 16S37: Quadratic and Koszul algebras 57N15: Topology of $E^n$ , $n$-manifolds ($4 \less n \less \infty$)

Citation

Basu, Samik; Basu, Somnath. Homotopy groups of certain highly connected manifolds via loop space homology. Osaka J. Math. 56 (2019), no. 2, 417--430. https://projecteuclid.org/euclid.ojm/1554278431


Export citation

References

  • S. Basu and S. Basu: Homotopy groups of highly connected manifolds, Adv. Math. 337 (2018), 363–416.
  • S. Basu and S. Basu: Homotopy groups and periodic geodesics of closed 4-manifolds, Internat. J. Math. 26 (2015), 1550059, 34pp.
  • A. Berglund and K. Börjeson: Free loop space homology of highly connected manifolds, Forum Math. 29 (2017), 201–228.
  • G.M. Bergman: The diamond lemma for ring theory, Adv. in Math. 29 (1978), 178–218.
  • P. Cartier: Remarques sur le théorème de Birkhoff-Witt, Ann. Scuola Norm. Sup. Pisa (3), 12 (1958), 1–4.
  • Y. Félix, S. Halperin and J.-C. Thomas: Rational homotopy theory, Graduate Texts in Mathematics 205, Springer-Verlag, New York, 2001.
  • B. Gray: On the sphere of origin of infinite families in the homotopy groups of spheres, Topology 8 (1969), 219–232.
  • P.J. Hilton: On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955), 154–172.
  • P. Lalonde and A. Ram: Standard Lyndon bases of Lie algebras and enveloping algebras, Trans. Amer. Math. Soc. 347 (1995), 1821–1830.
  • M. Lazard: Sur les algèbres enveloppantes universelles de certaines algèbres de Lie, Publ. Sci. Univ. Alger. Sér. A. 1 (1954), 281–294 (1955).
  • J.-L. Loday and B. Vallette: Algebraic operads, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 346, Springer, Heidelberg, 2012.
  • J. Milnor and D. Husemoller: Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73, Springer-Verlag, New York-Heidelberg, 1973.
  • J. Neisendorfer: Algebraic methods in unstable homotopy theory, New Mathematical Monographs 12, Cambridge University Press, Cambridge, 2010.
  • A. Polishchuk and L. Positselski: Quadratic algebras, University Lecture Series 37, American Mathematical Society, Providence, RI, 2005.
  • D.C. Ravenel: Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics 121, Academic Press, Inc., Orlando, FL, 1986.