Osaka Journal of Mathematics

Hopf bands in arborescent Hopf plumbings

Filip Misev

Full-text: Open access


For a positive Hopf plumbed arborescent Seifert surface $S$, we study the set of Hopf bands $H\subset S$, up to homology and up to the action of the monodromy. The classification of Seifert surfaces for which this set is finite is closely related to the classification of finite Coxeter groups.

Article information

Osaka J. Math., Volume 56, Number 2 (2019), 375-389.

First available in Project Euclid: 3 April 2019

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 57M27: Invariants of knots and 3-manifolds


Misev, Filip. Hopf bands in arborescent Hopf plumbings. Osaka J. Math. 56 (2019), no. 2, 375--389.

Export citation


  • N. A'Campo: Planar trees, slalom curves and hyperbolic knots, Inst. Hautes Etud. Sci. Publ. Math. 88 (1998), 171–180.
  • N. A'Campo: Sur les valeurs propres de la transformation de Coxeter, Invent. Math. 33 (1976), 61–67.
  • F. Bonahon and L. Siebenmann: New Geometric Splittings of Classical Knots, and the Classification and Symmetries of Arborescent Knots (1979-2009).
  • G. Burde, H. Zieschang and M. Heusener: Knots, De Gruyter Studies in Mathematics, 2013.
  • B. Farb and D. Margalit: A Primer on Mapping Class Groups, Princeton University Press, 2012.
  • D. Gabai: Detecting fibred links in $S^3$, Comm. Math. Helv 61 (1986), 519–555.
  • P. Gilmer and Ch. Livingston: Signature jumps and Alexander polynomials for links, (2015), arXiv:1508.04394.
  • E. Giroux and N. Goodman: On the stable equivalence of open books in three-manifolds, Geom. Topol. 10 (2006), 97–114.
  • J.E. Humphreys: Reflection groups and Coxeter groups, Cambridge University Press, 1992.
  • L. Liechti: On the spectra of mapping classes and the 4-genera of positive knots, PhD thesis, University of Bern, 2017.
  • L. Liechti: Signature, positive Hopf plumbing and the Coxeter transformation, Osaka J. Math. 53 (2016), 251–267, arXiv:1401.5336.
  • F. Misev: Cutting arcs for torus links and trees, Bull. Soc. Math. France 145 (2017), 575–602, arXiv:1409.0644.
  • L. Rudolph: A characterisation of quasipositive Seifert surfaces (Constructions of quasipositive knots and links, III), Topology 31 (1992), 231–237.
  • N. Saveliev: Lectures on the Topology of 3-Manifolds, An Introduction to the Casson Invariant, De Gruyter, 2012.
  • J. Stallings: Constructions of fibred knots and links; in Algebraic and geometric topology, Proc. Sympos. Pure Math. 32 (1978), 55–60, Amer. Math. Soc., Providence, R.I.
  • A.G. Tristram: Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969), 251–264.