Osaka Journal of Mathematics

Uniform well-posedness for a time-dependent Ginzburg-Landau model in superconductivity

Jishan Fan, Bessem Samet, and Yong Zhou

Full-text: Open access


We study the initial boundary value problem for a time-dependent Ginzburg-Landau model in superconductivity. First, we prove the uniform boundedness of strong solutions with respect to diffusion coefficient 0 < $\epsilon$ < 1 in the case of Coulomb gauge. Our second result is the global existence and uniqueness of the weak solutions to the limit problem when $\epsilon=0$.

Article information

Osaka J. Math., Volume 56, Number 2 (2019), 269-276.

First available in Project Euclid: 3 April 2019

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35Q35: PDEs in connection with fluid mechanics 35K55: Nonlinear parabolic equations


Fan, Jishan; Samet, Bessem; Zhou, Yong. Uniform well-posedness for a time-dependent Ginzburg-Landau model in superconductivity. Osaka J. Math. 56 (2019), no. 2, 269--276.

Export citation


  • Z.M. Chen, C. Elliott and Q. Tang: Justification of a two-dimensional evolutionary Ginzburg-Landau superconductivity model, RAIRO Model Math. Anal. Numer. 32 (1998), 25–50.
  • Z.M. Chen, K.H. Hoffmann and J.Liang: On a nonstationary Ginzburg-Landau superconductivity model, Math. Meth. Appl. Sci. 16 (1993), 855–875.
  • Q. Du: Global existence and uniqueness of solutions of the time dependent Ginzburg-Landau model for superconductivity, Appl. Anal. 53 (1994), 1–17.
  • Q. Tang: On an evolutionary system of Ginzburg-Landau equations with fixed total magnetic flux, Comm. PDE, 20 (1995), 1–36.
  • Q. Tang and S. Wang: Time dependent Ginzburg-Landau equations of superconductivity, Physica D, 88 (1995), 139–166.
  • J. Fan and S. Jiang: Global existence of weak solutions of a time-dependent 3-D Ginzburg-Landau model for superconductivity, Appl. Math. Lett. 16 (2003), 435–440.
  • J. Fan and T. Ozawa: Uniqueness of weak solutions to the Ginzburg-Landau model for superconductivity, Z. Angew. Math. Phys. 63 (2012), 453-459.
  • J. Fan, H. Gao and B. Guo: Uniqueness of weak solutions to the 3D Ginzburg-Landau superconductivity model, Int. Math. Res. Not. IMRN (2015), 1239–1246.
  • J. Fan and H. Gao: Uniqueness of weak solutions in critical spaces of the 3-D time-dependent Ginzburg-Landau equations for superconductivity, Math. Nachr. 283 (2010), 1134–1143.
  • R.A. Adams and J.J.F. Fournier: Sobolev Spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam) 140. Elsevier/Academic Press, Amsterdam, 2003.
  • A. Lunardi: Interpolation Theory, 2nd ed., Lecture Notes, Scuola Normale Superiore di Pisa (New Series), Edizioni della Normale, Pisa, 2009.
  • H. Beirão da Veiga and F. Crispo: Sharp inviscid limit results under Navier type boundary conditions: An $L^p$ theory, J. Math. Fluid Mech. 12, (2010), 307–411.