Osaka Journal of Mathematics

Infinite algebraic subgroups of the real Cremona group

Maria Fernanda Robayo and Susanna Zimmermann

Full-text: Open access

Abstract

We give the classification of the maximal infinite algebraic subgroups of the real Cremona group of the plane up to conjugacy and present a parametrisation space of each conjugacy class. Moreover, we show that the real plane Cremona group is not generated by a countable union of its infinite algebraic subgroups.

Article information

Source
Osaka J. Math., Volume 55, Number 4 (2018), 681-712.

Dates
First available in Project Euclid: 10 October 2018

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1539158666

Mathematical Reviews number (MathSciNet)
MR3862780

Zentralblatt MATH identifier
06985307

Subjects
Primary: 14E07: Birational automorphisms, Cremona group and generalizations
Secondary: 14L99: None of the above, but in this section 14P99: None of the above, but in this section

Citation

Robayo, Maria Fernanda; Zimmermann, Susanna. Infinite algebraic subgroups of the real Cremona group. Osaka J. Math. 55 (2018), no. 4, 681--712. https://projecteuclid.org/euclid.ojm/1539158666


Export citation

References

  • I. Biswas and J. Huisman: Rational real algebraic models of topological surfaces, Doc. Math. 12 (2007), 549–567.
  • J. Blanc: Sous-groupes algébriques du groupe de Cremona, Transformation groups, 14 (2009), 249–285.
  • J. Blanc and J.-P. Furter: Topologies and structures on the Cremona groups, Ann. of Math. 178 (2013), 1173–1198.
  • J. Blanc and F. Mangolte: Cremona groups of real surfaces, in Automorphisms in birational and affine geometry, Springer Proc. Math. Stat. 79 (2014), 35–58.
  • M. Brion: On actions of connected algebraic groups, arXiv:1412.1906v1.
  • G. Castelnuovo: Le trasformazioni generatrici del gruppo cremoniano nel piano, Atti della R. Accad. delle Scienze di Torino, 36 (1901), 861–874.
  • A. Comessatti: Fondamenti per la geometria sopra le superficie razionali dal punto di vista reale, Math. Ann. 73 (1912), 1–72.
  • A. Corti: Factoring birational maps of threefolds after Sarkisov, J. Algebraic. Geom. 4 (1995), 223–254.
  • M. Demazure: Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup. (4) 3 (1970), 507–588.
  • I. Dolgachev and V. Iskovskikh: Finite subgroups of the plane Cremona group, in Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I, Progr. Math. 269, Birkhäuser Boston, Inc., Boston, MA, (2009), 443–548.
  • J. Huisman and F. Mangolte: The group of automorphisms of a real rational surface is n-transitive, Bull. Lond. Math. Soc. 41 (2009), 563–568.
  • V.A. Iskovskikh: Factorization of birational mappings of rational surfaces from the viewpoint of Mori theory, Uspekhi Mat. Nauk 51, 3–72. English translation: Russian Math. Surveys 51 (1996), 585–652.
  • J. Kollár and S. Mori: Birational geometry of algebraic varieties, with the collaboration of C.H. Clemens and A. Corti. Translated from the 1998 Japanese original. Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998.
  • J. Kollár and F. Mangolte: Cremona transformations and diffeomorphisms of surfaces, Adv. Math. 222 (2009), 44–61.
  • J. Limpan: Desingularization of two-dimensional schemes, Ann. Math. (2) 107 (1978), 151–207.
  • M.F. Robayo: Prime order birational diffeomorphisms of the sphere, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 16 (2016), 909–970.
  • M. Rosenlicht: Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401–443.
  • F. Ronga and T. Vust: Diffeomorfismi birazionali del piano proiettivo reale, Comm. Math. Helv. 80 (2005), 517–540.
  • J.-J. Sansuc: Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12–80.
  • J.-P. Serre: Le groupe de Cremona et ses sous-groupes finis, Séminaire Bourbaki. Volume 2008/2009. Astérisque No. 332 (2010), Exp. No. 1000, vii, 75–100.
  • H. Sumihiro: Equivariant completion II, J. Math. Kyoto Univ. 15 (1975), 573–605.
  • W.C. Waterhouse: Introduction to Affine Group Schemes, Graduate Texts in Mathematics, 66. Springer-Verlag, New York-Berlin, 1979.
  • A. Weil: On Algebraic Groups of Transformations, Amer. J. Math. 77 (1955), 355–391.
  • E. Yasinsky: Subgroups of odd order in the real plane Cremona group, J. Algebra 461 (2016), 87–120.
  • S. Zimmermann: The abelianisation of the real Cremona group, Duke Math. J. 167 (2018), 211–267.