Osaka Journal of Mathematics
- Osaka J. Math.
- Volume 54, Number 2 (2017), 249-272.
Analytic extension of Jorge-Meeks type maximal surfaces in Lorentz-Minkowski 3-space
Shoichi Fujimori, Yu Kawakami, Masatoshi Kokubu, Wayne Rossman, Masaaki Umehara, and Kotaro Yamada
Abstract
The Jorge-Meeks $n$-noid ($n\ge 2$) is a complete minimal surface of genus zero with $n$ catenoidal ends in the Euclidean 3-space $\boldsymbol{R}^3$, which has $(2\pi/n)$-rotation symmetry with respect to its axis. In this paper, we show that the corresponding maximal surface $f_n$ in Lorentz-Minkowski 3-space $\boldsymbol{R}^3_1$ has an analytic extension $\tilde f_n$ as a properly embedded zero mean curvature surface. The extension changes type into a time-like (minimal) surface.
Article information
Source
Osaka J. Math., Volume 54, Number 2 (2017), 249-272.
Dates
First available in Project Euclid: 1 June 2017
Permanent link to this document
https://projecteuclid.org/euclid.ojm/1496282423
Mathematical Reviews number (MathSciNet)
MR3657229
Zentralblatt MATH identifier
1375.53016
Subjects
Primary: 53A10: Minimal surfaces, surfaces with prescribed mean curvature [See also 49Q05, 49Q10, 53C42]
Secondary: 53A35: Non-Euclidean differential geometry 53C50: Lorentz manifolds, manifolds with indefinite metrics
Citation
Fujimori, Shoichi; Kawakami, Yu; Kokubu, Masatoshi; Rossman, Wayne; Umehara, Masaaki; Yamada, Kotaro. Analytic extension of Jorge-Meeks type maximal surfaces in Lorentz-Minkowski 3-space. Osaka J. Math. 54 (2017), no. 2, 249--272. https://projecteuclid.org/euclid.ojm/1496282423