Osaka Journal of Mathematics

Remark on characterization of wave front set by wave packet transform

Keiichi Kato, Masaharu Kobayashi, and Shingo Ito

Full-text: Open access

Abstract

In this paper, we give characterizations of usual wave front set and wave front set in $H^s$ in terms of wave packet transform without any restriction on basic wave packet, which give complete answers of the question raised by G. B. Folland.

Article information

Source
Osaka J. Math., Volume 54, Number 2 (2017), 209-228.

Dates
First available in Project Euclid: 1 June 2017

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1496282421

Mathematical Reviews number (MathSciNet)
MR3657227

Zentralblatt MATH identifier
1367.35010

Subjects
Primary: 35A18: Wave front sets
Secondary: 42B10: Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type

Citation

Kato, Keiichi; Kobayashi, Masaharu; Ito, Shingo. Remark on characterization of wave front set by wave packet transform. Osaka J. Math. 54 (2017), no. 2, 209--228. https://projecteuclid.org/euclid.ojm/1496282421


Export citation

References

  • A. Córdoba and C. Fefferman: Wave packets and Fourier integral operators, Comm. Partial Differential Equations 3 (1978), 979–1005.
  • J.M. Delort: F.B.I. transformation. Second microlocalization and semilinear caustics. Lecture Notes in Math. 1522. Springer-Verlag, Berlin, (1992).
  • G.B. Folland: Harmonic analysis in phase space, Ann. of Math. Studies No.122, Princeton Univ. Press, Princeton, NJ, (1989).
  • P. Gérard: Moyennisation et régularité deux-microlocale, Ann. Sci. École Norm. Sup. 23 (1990), 89–121.
  • K. Gröchenig: Foundations of Time-Frequency Analysis, Birkhäuser Boston (2001).
  • L. Hörmander: Fourier integral operators, I, Acta Math. 127 (1971), 79–183.
  • L. Hörmander: Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math. 24 (1971), 671–704.
  • L. Hörmander: The Analysis of Linear Partial Differential Operators I, II, III, IV, Springer-Verlag, Berlin, (1983), (1985).
  • K. Kato, M. Kobayashi and S. Ito: Representation of Schrödinger operator of a free particle via short time Fourier transform and its applications, Tohoku Math. Journal, 64 (2012), 223–231.
  • K. Kato and S. Ito: Singularities for solutions to time dependent Schrödinger equations with sub-quadratic potential, SUT Journal of Math., 50 (2014), 383–398.
  • S. Mizohota: The theory of partial differential equations, Cambridge University Press, New York, (1973).
  • T. Ōkaji: A note on the wave packet transforms, Tsukuba J. Math. 25 (2001), 383–397.
  • S. Pilipović, N. Teofanov and J. Toft: Wave-front sets in Fourier Lebesgue spaces, Rend. Semin. Mat. Univ. Politec. Torino 66 (2008), 299–319.
  • S. Pilipović, N. Teofanov and J. Toft: Micro-Local Analysis with Fourier Lebesgue Spaces. Part I, J. Fourier Anal. Appl. 17 (2011), 374-407.
  • M. Sato, T. Kawai and M. Kashiwara: Hyperfunctions and pseudodifferential equations, In: Lecture Notes in Math. 287, Springer-Verlag, New York (1973), 265–529.
  • F. Trèves: Introduction to pseudodifferential and Fourier integral operators. Vol. 1 and Vol. 2. The University Series in Mathematics. Plenum Press, New York-London, (1980).