Osaka Journal of Mathematics

The center of a quantized enveloping algebra at an even root of unity

Toshiyuki Tanisaki

Full-text: Open access


We will give an explicit description of the center of the De Concini--Kac type specialization of a quantized enveloping algebra at an even root of unity. The case of an odd root of unity was already dealt with by De Concini--Kac--Procesi. Our description in the even case is similar to but a little more complicated than the odd case.

Article information

Osaka J. Math., Volume 53, Number 1 (2016), 47-83.

First available in Project Euclid: 19 February 2016

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 20G42: Quantum groups (quantized function algebras) and their representations [See also 16T20, 17B37, 81R50] 17B37: Quantum groups (quantized enveloping algebras) and related deformations [See also 16T20, 20G42, 81R50, 82B23]


Tanisaki, Toshiyuki. The center of a quantized enveloping algebra at an even root of unity. Osaka J. Math. 53 (2016), no. 1, 47--83.

Export citation


  • H.H. Andersen: Quantum groups at roots of $\pm 1$, Comm. Algebra 24 (1996), 3269–3282.
  • J. Beck: Representations of quantum groups at even roots of unity, J. Algebra 167 (1994), 29–56.
  • P. Caldero: Éléments ad-finis de certains groupes quantiques, C.R. Acad. Sci. Paris Sér. I Math. 316 (1993), 327–329.
  • C. De Concini: Poisson algebraic groups and representations of quantum groups at roots of $1$; in First European Congress of Mathematics 1 (Paris, 1992), Progr. Math. 119, Birkhäuser, Basel, 1994, 93–119.
  • C. De Concini and V.G. Kac: Representations of quantum groups at roots of $1$; in Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989), Progr. Math. 92, Birkhäuser Boston, Boston, MA, 1990, 471–506.
  • C. De Concini, V.G. Kac and C. Procesi: Quantum coadjoint action, J. Amer. Math. Soc. 5 (1992), 151–189.
  • C. De Concini, V.G. Kac and C. Procesi: Some remarkable degenerations of quantum groups, Comm. Math. Phys. 157 (1993), 405–427.
  • C. De Concini and C. Procesi: Quantum groups, in $D$-Modules, Representation Theory, and Quantum Groups (Venice, 1992), Lecture Notes in Math. 1565, Springer, Berlin, 1993, 31–140.
  • F. Gavarini: Quantization of Poisson groups, Pacific J. Math. 186 (1998), 217–266.
  • M. Hochster and J.A. Eagon: Cohen–Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058.
  • A. Joseph and G. Letzter: Local finiteness of the adjoint action for quantized enveloping algebras, J. Algebra 153 (1992), 289–318.
  • S.-J. Kang, M. Kashiwara and S.-j. Oh: Supercategorification of quantum Kac–Moody algebras II, arXiv:1303.1916.
  • A.N. Kirillov and N. Reshetikhin: $q$-Weyl group and a multiplicative formula for universal $R$-matrices, Comm. Math. Phys. 134 (1990), 421–431.
  • S.M. Khoroshkin and V.N. Tolstoy: Universal $R$-matrix for quantized (super)algebras, Comm. Math. Phys. 141 (1991), 599–617.
  • S.Z. Levendorskiĭ and Ya. S. Soĭ bel'man: Quantum Weyl group and multiplicative formula for the $R$-matrix of a simple Lie algebra, Funct. Anal. Appl. 25 (1991), 143–145.
  • G. Lusztig: Quantum groups at roots of $1$, Geom. Dedicata 35 (1990), 89–113.
  • G. Lusztig: Introduction to Quantum Groups, Progress in Mathematics 110, Birkhäuser Boston, Boston, MA, 1993.
  • R. Steinberg: On a theorem of Pittie, Topology 14 (1975), 173–177.
  • T. Tanisaki: Killing forms, Harish-Chandra isomorphisms, and universal $R$-matrices for quantum algebras, Inter. J. Mod. Phys. A7 (1992), 941–961.
  • T. Tanisaki: Manin triples and differential operators on quantum groups, Tokyo J. Math. 36 (2013), 49–83.