Osaka Journal of Mathematics

A finite presentation for the hyperelliptic mapping class group of a nonorientable surface

Michał Stukow

Full-text: Open access

Abstract

We obtain a simple presentation of the hyperelliptic mapping class group $\mathcal{M}^{h}(N)$ of a nonorientable surface $N$. As an application we compute the first homology group of $\mathcal{M}^{h}(N)$ with coefficients in $H_{1}(N; \mathbb{Z})$.

Article information

Source
Osaka J. Math., Volume 52, Number 2 (2015), 495-515.

Dates
First available in Project Euclid: 24 March 2015

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1427202899

Mathematical Reviews number (MathSciNet)
MR3326623

Zentralblatt MATH identifier
1320.57023

Subjects
Primary: 57N05: Topology of $E^2$ , 2-manifolds
Secondary: 20F38: Other groups related to topology or analysis 57M99: None of the above, but in this section

Citation

Stukow, Michał. A finite presentation for the hyperelliptic mapping class group of a nonorientable surface. Osaka J. Math. 52 (2015), no. 2, 495--515. https://projecteuclid.org/euclid.ojm/1427202899


Export citation

References

  • S.J. Bigelow and R.D. Budney: The mapping class group of a genus two surface is linear, Algebr. Geom. Topol. 1 (2001), 699–708.
  • J.S. Birman: Braids, Links, and Mapping Class Groups, Ann. of Math. Studies 82, Princeton Univ. Press, Princeton, NJ, 1974.
  • J.S. Birman and D.R.J. Chillingworth: On the homeotopy group of a non-orientable surface, Proc. Cambridge Philos. Soc. 71 (1972), 437–448.
  • J.S. Birman and H.M. Hilden: On the mapping class groups of closed surfaces as covering spaces; in Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969), Ann. of Math. Studies 66, Princeton Univ. Press, Princeton, NJ, 1971, 81–115.
  • C.-F. Bödigheimer, F.R. Cohen and M.D. Peim: Mapping class groups and function spaces; in Homotopy Methods in Algebraic Topology (Boulder, CO, 1999), Contemp. Math. 271, Amer. Math. Soc., Providence, RI, 2001, 17–39.
  • K.S. Brown: Cohomology of Groups, Graduate Texts in Mathematics 87, Springer, New York, 1982.
  • D.R.J. Chillingworth: A finite set of generators for the homeotopy group of a non-orientable surface, Proc. Cambridge Philos. Soc. 65 (1969), 409–430.
  • S. Gadgil and D. Pancholi: Homeomorphisms and the homology of non-orientable surfaces, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), 251–257.
  • N. Kawazumi: Homology of hyperelliptic mapping class groups for surfaces, Topology Appl. 76 (1997), 203–216.
  • W. Magnus: Über Automorphismen von Fundamentalgruppen berandeter Flächen, Math. Ann. 109 (1934), 617–646.
  • S. Morita: Families of Jacobian manifolds and characteristic classes of surface bundles, I, Ann. Inst. Fourier (Grenoble) 39 (1989), 777–810.
  • L. Paris and B. Szepietowski. A presentation for the mapping class group of a nonorientable surface, arXiv:1308.5856v1 [math.GT] (2013).
  • U. Pinkal and J.D. McCarthy: Representing homology automorphisms of nonorientable surfaces, Max Planc Inst. preprint MPI/SFB 85-11, available at http://www.math.msu.edu/ mccarthy, (2004).
  • M. Stukow: Conjugacy classes of finite subgroups of certain mapping class groups, Turkish J. Math. 28 (2004), 101–110.
  • M. Stukow: The twist subgroup of the mapping class group of a nonorientable surface, Osaka J. Math. 46 (2009), 717–738.
  • \begingroup M. Stukow: A finite presentation for the mapping class group of a nonorientable surface with Dehn twists and one crosscap slide as generators, J. Pure Appl. Algebra 218 (2014), 2226–2239. \endgroup
  • A. Tanaka: The first homology group of the hyperelliptic mapping class group with twisted coefficients, Topology Appl. 115 (2001), 19–42.
  • B. Wajnryb: A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983), 157–174.
  • H. Zieschang: On the homeotopy group of surfaces, Math. Ann. 206 (1973), 1–21.