Osaka Journal of Mathematics

Separable functors in group coring

D.-G. Wang and Q.-G. Chen

Full-text: Open access


The paper will characterise the separability of the forgetful functor from the category of comodules over a group coring to the category of modules over a suitable algebra. Then the applications of our results to group entwined modules, Doi--Hopf group modules and relative Hopf group modules are considered.

Article information

Osaka J. Math., Volume 52, Number 2 (2015), 475-495.

First available in Project Euclid: 24 March 2015

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 16T05: Hopf algebras and their applications [See also 16S40, 57T05]


Wang, D.-G.; Chen, Q.-G. Separable functors in group coring. Osaka J. Math. 52 (2015), no. 2, 475--495.

Export citation


  • \begingroup T. Brzeziński: The structure of corings: induction functors, Maschke-type theorem, and Frobenius and Galois-type properties, Algebr. Represent. Theory 5 (2002), 389–410. \endgroup
  • T. Brzeziński, S. Caenepeel, G. Militaru and S. Zhu: Frobenius and Maschke type theorems for Doi–Hopf modules and entwined modules revisited: a unified approach; in Ring Theory and Algebraic Geometry (León, 1999), Lecture Notes in Pure and Appl. Math. 221, Dekker, New York, 2001, 1–31.
  • \begingroup S. Caenepeel and M. De Lombaerde: A categorical approach to Turaev's Hopf group-coalgebras, Comm. Algebra 34 (2006), 2631–2657. \endgroup
  • S. Caenepeel, B. Ion, G. Militaru and S. Zhu: Separable functors for the category of Doi–Hopf modules, applications, Adv. Math. 145 (1999), 239–290.
  • S. Caenepeel, K. Janssen and S.H. Wang: Group corings, Appl. Categ. Structures 16 (2008), 65–96.
  • Q.G. Chen and S.H. Wang: Separable functors for the category of Doi–Hopf $\pi$-modules, Abh. Math. Semin. Univ. Hambg. 81 (2011), 261–272.
  • Y. Doi: Unifying Hopf modules, J. Algebra 153 (1992), 373–385.
  • F. Castaño Iglesias, J. Gómez Torrecillas and C. Năstăsescu: Separable functors in coalgebras. Applications, Tsukuba J. Math. 21 (1997), 329–344.
  • F. Castaño Iglesias, J. Gómez Torrecillas and C. Năstăsescu: Separable functors in graded rings, J. Pure Appl. Algebra 127 (1998), 219–230.
  • C. Năstăsescu, M. Van den Bergh and F. Van Oystaeyen: Separable functors applied to graded rings, J. Algebra 123 (1989), 397–413.
  • M.D. Rafael: Separable functors revisited, Comm. Algebra 18 (1990), 1445–1459.
  • A. del Rí o: Categorical methods in graded ring theory, Publ. Mat. 36 (1992), 489–531.
  • M. Sweedler: The predual theorem to the Jacobson–Bourbaki theorem, Trans. Amer. Math. Soc. 213 (1975), 391–406.
  • M.E. Sweedler: Hopf Algebras, W.A. Benjamin, Inc., New York, 1969.
  • V.G. Turaev: Homotopy field theory in dimension 3 and crossed group-categories, preprint math.GT/000529 (2000).
  • A. Virelizier: Hopf group-coalgebras, J. Pure Appl. Algebra 171 (2002), 75–122.
  • S.H. Wang: Group twisted smash products and Doi–Hopf modules for $T$-coalgebras, Comm. Algebra 32 (2004), 3417–3436.
  • S.H. Wang: Group entwining structures and group coalgebra Galois extensions, Comm. Algebra 32 (2004), 3437–3457.
  • S.H. Wang: A Maschke type theorem for Hopf $\pi$-comodules, Tsukuba J. Math. 28 (2004), 377–388.
  • M. Zunino: Double construction for crossed Hopf coalgebras, J. Algebra 278 (2004), 43–75.
  • M. Zunino: Yetter–Drinfeld modules for crossed structures, J. Pure Appl. Algebra 193 (2004), 313–343.