Osaka Journal of Mathematics

Determining the Hurwitz orbit of the standard generators of a braid group

Yoshiro Yaguchi

Full-text: Open access


The Hurwitz action of the $n$-braid group $B_{n}$ on the $n$-fold product $(B_{m})^{n}$ of the $m$-braid group $B_{m}$ is studied. Using a natural action of $B_{n}$ on trees with $n$ labeled edges and $n+1$ labeled vertices, we determine all elements of the orbit of every $n$-tuple of the $n$ distinct standard generators of $B_{n+1}$ under the Hurwitz action of $B_{n}$.

Article information

Osaka J. Math., Volume 52, Number 1 (2015), 59-71.

First available in Project Euclid: 24 March 2015

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 20F36: Braid groups; Artin groups
Secondary: 20F34: Fundamental groups and their automorphisms [See also 57M05, 57Sxx]


Yaguchi, Yoshiro. Determining the Hurwitz orbit of the standard generators of a braid group. Osaka J. Math. 52 (2015), no. 1, 59--71.

Export citation


  • E. Artin: Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925), 47–72.
  • T. Ben-Itzhak and M. Teicher: Properties of Hurwitz equivalence in the braid group of order $n$, J. Algebra 264 (2003), 15–25.
  • J.S. Birman: Braids, Links, and Mapping Class Groups, Ann. of Math. Studies 82, Princeton Univ. Press, Princeton, NJ, 1974.
  • F. Bohnenblust: The algebraical braid group, Ann. of Math. (2) 48 (1947), 127–136.
  • F. Catanese and M. Paluszny: Polynomial-lemniscates, trees and braids, Topology 30 (1991), 623–640.
  • F. Catanese and B. Wajnryb: The fundamental group of generic polynomials, Topology 30 (1991), 641–651.
  • F.A. Garside: The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235–254.
  • S.P. Humphries: Finite Hurwitz braid group actions on sequences of Euclidean reflections, J. Algebra 269 (2003), 556–588.
  • S.P. Humphries: Finite Hurwitz braid group actions for Artin groups, Israel J. Math. 143 (2004), 189–222.
  • A. Hurwitz: Ueber die Anzahl der Riemann'schen Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 55 (1901), 53–66.
  • S. Kamada: Braid and Knot Theory in Dimension Four, Mathematical Surveys and Monographs 95, Amer. Math. Soc., Providence, RI, 2002.
  • P. Kluitmann: Hurwitz action and finite quotients of braid groups; in Braids (Santa Cruz, CA, 1986), Contemp. Math. 78, Amer. Math. Soc., Providence, RI, 1988, 299–325.
  • B.G. Moishezon: Stable branch curves and braid monodromies; in Algebraic Geometry (Chicago, Ill., 1980), Lecture Notes in Math. 862, Springer, Berlin, 1981, 107–192.
  • L. Rudolph: Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1983), 1–37.
  • Y. Yaguchi: Isotropy subgroup of Hurwitz action of the 3-braid group on the braid systems, J. Knot Theory Ramifications 18 (2009), 1021–1030.
  • Y. Yaguchi: The orbits of the Hurwitz action of the braid groups on the standard generators, Fund. Math. 210 (2010), 63–71.
  • Y. Yaguchi: Isotropy subgroup of the Hurwitz action of the 4-braid group on braid systems, J. Gökova Geom. Topol. 4 (2010), 82–95. \endthebibliography*