Osaka Journal of Mathematics

The homotopy types of $\mathit{SU}(5)$-gauge groups

Stephen Theriault

Full-text: Open access

Abstract

Let $\mathcal{G}_{k}$ be the gauge group of the principal $\mathit{SU}(5)$-bundle over $S^{4}$ with second Chern class $k$. We show that there is a $p$-local homotopy equivalence $\mathcal{G}_{k} \simeq \mathcal{G}_{k'}$ for any prime $p$ if and only if $(120,k) = (120,k')$.

Article information

Source
Osaka J. Math., Volume 52, Number 1 (2015), 15-31.

Dates
First available in Project Euclid: 24 March 2015

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1427202869

Mathematical Reviews number (MathSciNet)
MR3326599

Zentralblatt MATH identifier
1315.55005

Subjects
Primary: 55P15: Classification of homotopy type
Secondary: 54C35: Function spaces [See also 46Exx, 58D15]

Citation

Theriault, Stephen. The homotopy types of $\mathit{SU}(5)$-gauge groups. Osaka J. Math. 52 (2015), no. 1, 15--31. https://projecteuclid.org/euclid.ojm/1427202869


Export citation

References

  • M.F. Atiyah and R. Bott: The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523–615.
  • A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80 (1958), 458–538.
  • A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces. II, Amer. J. Math. 81 (1959), 315–382.
  • R. Bott: A note on the Samelson product in the classical groups, Comment. Math. Helv. 34 (1960), 249–256.
  • M.C. Crabb and W.A. Sutherland: Counting homotopy types of gauge groups, Proc. London Math. Soc. (3) 81 (2000), 747–768.
  • D.H. Gottlieb: Applications of bundle map theory, Trans. Amer. Math. Soc. 171 (1972), 23–50.
  • H. Hamanaka and A. Kono: Unstable $K^{1}$-group and homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 149–155.
  • I.M. James: The Topology of Stiefel Manifolds, Cambridge Univ. Press, Cambridge, 1976.
  • D. Kishimoto, A. Kono and S. Theriault: Refined gauge group decompositions, Kyoto J. Math. 54 (2014), 679–691.
  • Y. Kamiyama, D. Kishimoto, A. Kono and S. Tsukuda: Samelson products of $\mathrm{SO}(3)$ and applications, Glasg. Math. J. 49 (2007), 405–409.
  • A. Kono: A note on the homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 117 (1991), 295–297.
  • G.E. Lang, Jr.: The evaluation map and EHP sequences, Pacific J. Math. 44 (1973), 201–210.
  • M. Mimura, G. Nishida and H. Toda: Mod $p$ decomposition of compact Lie groups, Publ. Res. Inst. Math. Sci. 13 (1977), 627–680.
  • M. Mimura and H. Toda: Homotopy groups of $\mathrm{SU}(3)$, $\mathrm{SU}(4)$ and $\mathrm{Sp}(2)$, J. Math. Kyoto Univ. 3 (1964), 217–250.
  • S. Oka: On the homotopy groups of sphere bundles over spheres, J. Sci. Hiroshima Univ. Ser. A-I Math. 33 (1969), 161–195.
  • W.A. Sutherland: Function spaces related to gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 121 (1992), 185–190.
  • S.D. Theriault: The homotopy types of $\mathrm{Sp}(2)$-gauge groups, Kyoto J. Math. 50 (2010), 591–605.
  • H. Toda: Composition Methods in Homotopy Groups of Spheres, Annals of Mathematics Studies 49, Princeton Univ. Press, Princeton, NJ, 1962.
  • H. Toda: On homotopy groups of $S^{3}$-bundles over spheres, J. Math. Kyoto Univ. 2 (1963), 193–207.