Osaka Journal of Mathematics

Wegner estimate for a nonsign definite generalized alloy type potential

Jyunichi Takahara

Full-text: Open access

Abstract

P.D. Hislop and F. Klopp proved a Wegner estimate for Schrödinger operators with nonsign definite potentials for each fixed position of impurities [12]. In this paper, a similar estimate is proven treating also the position of impurities as random variables.

Article information

Source
Osaka J. Math., Volume 51, Number 3 (2014), 709-719.

Dates
First available in Project Euclid: 23 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1414090800

Mathematical Reviews number (MathSciNet)
MR3272614

Zentralblatt MATH identifier
1308.82040

Subjects
Primary: 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.)
Secondary: 35R60: Partial differential equations with randomness, stochastic partial differential equations [See also 60H15] 47B80: Random operators [See also 47H40, 60H25] 47N50: Applications in the physical sciences 82B05: Classical equilibrium statistical mechanics (general)

Citation

Takahara, Jyunichi. Wegner estimate for a nonsign definite generalized alloy type potential. Osaka J. Math. 51 (2014), no. 3, 709--719. https://projecteuclid.org/euclid.ojm/1414090800


Export citation

References

  • P.W. Anderson: Absence of diffusion in certain random lattice, Phys. Rev. 109 (1958), 1492–1505.
  • K. Ando, A. Iwatsuka, M. Kaminaga and F. Nakano: The spectrum of Schrödinger operators with Poisson type random potential, Ann. Henri Poincaré 7 (2006), 145–160.
  • J.-M. Combes and P.D. Hislop: Localization for some continuous, random Hamiltonians in $d$-dimensions, J. Funct. Anal. 124 (1994), 149–180.
  • J.-M. Combes, P.D. Hislop and F. Klopp: An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators, Duke Math. J. 140 (2007), 469–498.
  • J.-M. Combes, P.D. Hislop and S. Nakamura: The $L^{p}$-theory of the spectral shift function, the Wegner estimate, and the integrated density of states for some random operators, Comm. Math. Phys. 218 (2001), 113–130.
  • R. Carmona and J. Lacroix: Spectral Theory of Random Schrödinger Operators, Birkhäuser Boston, Boston, MA, 1990.
  • W. Fischer, H. Leschke and P. Müller: Spectral localization by Gaussian random potentials in multi-dimensional continuous space, J. Statist. Phys. 101 (2000), 935–985.
  • L. Pastur and A. Figotin: Spectra of Random and Almost-Periodic Operators, Springer, Berlin, 1992.
  • F. Germinet, P.D. Hislop and A. Klein: Localization for Schrödinger operators with Poisson random potential, J. Eur. Math. Soc. (JEMS) 9 (2007), 577–607.
  • F. Germinet, P.D. Hislop and A. Klein: Localization at low energies for attractive Poisson random Schrödinger operators; in Probability and Mathematical Physics, CRM Proc. Lecture Notes 42, Amer. Math. Soc., Providence, RI, 2007, 153–165.
  • F. Germinet and A. Klein: Bootstrap multiscale analysis and localization in random media, Comm. Math. Phys. 222 (2001), 415–448.
  • P.D. Hislop and F. Klopp: The integrated density of states for some random operators with nonsign definite potentials, J. Funct. Anal. 195 (2002), 12–47.
  • W. Kirsch: Wegner estimates and Anderson localization for alloy-type potentials, Math. Z. 221 (1996), 507–512.
  • W. Kirsch and I. Veselić: Wegner estimate for sparse and other generalized alloy type potentials, Proc. Indian Acad. Sci. Math. Sci. 112 (2002), 131–146.
  • A. Klein, A. Koines and M. Seifert: Generalized eigenfunctions for waves in inhomogeneous media, J. Funct. Anal. 190 (2002), 255–291.
  • F. Klopp: Localization for some continuous random Schrödinger operators, Comm. Math. Phys. 167 (1995), 553–569.
  • S. Kotani and B. Simon: Localization in general one-dimensional random systems. II. Comm. Math. Phys. 112 (1987), 103–119.
  • S. Nakamura: A remark on the Dirichlet–Neumann decoupling and the integrated density of states, J. Funct. Anal. 179 (2001), 136–152.
  • \begingroup M. Reed and B. Simon: Methods of Modern Mathematical Physics. II. Academic Press, New York, 1975. \endgroup
  • B. Simon: Trace Ideals and Their Applications, second edition, Mathematical Surveys and Monographs 120, Amer. Math. Soc., Providence, RI, 2005.
  • P. Stollmann: Caught by Disorder, Birkhäuser Boston, Boston, MA, 2001.
  • J. Takahara: Wegner estimate for a generalized alloy type potential, J. Math. Kyoto Univ. 49 (2009), 255–265.
  • N. Ueki: Wegner estimates and localization for Gaussian random potentials, Publ. Res. Inst. Math. Sci. 40 (2004), 29–90.
  • F. Wegner: Bounds on the density of states in disordered systems, Z. Phys. B 44 (1981), 9–15.
  • D.R. Yafaev: Mathematical Scattering Theory, Amer. Math. Soc., Providence, RI, 1992.