Osaka Journal of Mathematics

The computation of overlap coincidence in Taylor--Socolar substitution tiling

Shigeki Akiyama and Jeong-Yup Lee

Full-text: Open access

Abstract

Recently Taylor and Socolar introduced an aperiodic mono-tile. The associated tiling can be viewed as a substitution tiling. We use the substitution rule for this tiling and apply the algorithm of [1] to check overlap coincidence. It turns out that the tiling has overlap coincidence. So the tiling dynamics has pure point spectrum and we can conclude that this tiling has a quasicrystalline structure.

Article information

Source
Osaka J. Math., Volume 51, Number 3 (2014), 597-609.

Dates
First available in Project Euclid: 23 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1414090793

Mathematical Reviews number (MathSciNet)
MR3272607

Zentralblatt MATH identifier
06368439

Subjects
Primary: 52C23: Quasicrystals, aperiodic tilings

Citation

Akiyama, Shigeki; Lee, Jeong-Yup. The computation of overlap coincidence in Taylor--Socolar substitution tiling. Osaka J. Math. 51 (2014), no. 3, 597--609. https://projecteuclid.org/euclid.ojm/1414090793


Export citation

References

  • S. Akiyama and J.-Y. Lee: Algorithm for determining pure pointedness of self-affine tilings, Adv. Math. 226 (2011), 2855–2883.
  • R. Ammann, B. Grünbaum and G.C. Shephard: Aperiodic tiles, Discrete Comput. Geom. 8 (1992), 1–25.
  • S. Akiyama and J.-Y. Lee: Algorithm to compute overlap coincidence of Taylor–Socolar tiling, http://math.tsukuba.ac.jp/~ akiyama/Research1.html, http:// newton.kias.re.kr/~ jeongyup/Research/
  • \begingroup R. Berger: The undecidability of the domino problem, Mem. Amer. Math. Soc. No. 66 (1966), 72. \endgroup
  • M. Baake and F. Gähler: Oral communications.
  • M. Baake, F. Gähler and U. Grimm: Hexagonal inflation tilings and planar monotiles, Symmetry 4 (2012), 581–602.
  • R.M. Robinson: Undecidability and nonperiodicity for tilings of the plane, Invent. Math. 12 (1971), 177–209.
  • M. Baake and D. Lenz: Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra, Ergodic Theory Dynam. Systems 24 (2004), 1867–1893.
  • M. Baake and R.V. Moody: Weighted Dirac combs with pure point diffraction, J. Reine Angew. Math. 573 (2004), 61–94.
  • D. Frettlöh: Nichtperiodische Pflasterungen mit ganzzahligem Inflationsfaktor, Ph.D. Thesis, Univ. Dortmund, 2002.
  • F. Gähler and R. Klitzing: The diffraction pattern of self-similar tilings; in The Mathematics of Long-Range Aperiodic Order (Waterloo, ON, 1995), Kluwer Acad. Publ., Dordrecht, 1977, 141–174.
  • M. Gardner: Extraordinary nonperiodic tiling that enriches the theory of tiles, Sci. Amer. (USA) 236 (1977), 110–119
  • J.-B. Gouéré: Diffraction et mesure de Palm des processus ponctuels, C.R. Math. Acad. Sci. Paris 336 (2003), 57–62.
  • B. Grünbaum and G.C. Shephard: Tilings and Patterns, Freeman, New York, 1987.
  • A. Hof: Diffraction by aperiodic structures; in The Mathematics of Long-Range Aperiodic Order (Waterloo, ON, 1995), Kluwer Acad. Publ., Dordrecht, 1977, 239–268.
  • International Union of Crystallography: Report of the executive commitee for 1991, Acta Cryst. A48 (1992), 922–946.
  • J.C. Lagarias: Meyer's concept of quasicrystal and quasiregular sets, Comm. Math. Phys. 179 (1996), 365–376.
  • J.C. Lagarias and P.A.B. Pleasants: Repetitive Delone sets and quasicrystals, Ergodic Theory Dynam. Systems 23 (2003), 831–867.
  • J.-Y. Lee: Substitution Delone sets with pure point spectrum are inter-model sets, J. Geom. Phys. 57 (2007), 2263–2285.
  • J.-Y. Lee and R.V. Moody: Lattice substitution systems and model sets, Discrete Comput. Geom. 25 (2001), 173–201.
  • J.-Y. Lee and R.V. Moody: Taylor–Socolar hexagonal tilings as model sets, Symmetry 5 (2013), 1–46.
  • J.-Y. Lee, R.V. Moody and B. Solomyak: Pure point dynamical and diffraction spectra, Ann. Henri Poincaré 3 (2002), 1003–1018.
  • J.-Y. Lee, R.V. Moody and B. Solomyak: Consequences of pure point diffraction spectra for multiset substitution systems, Discrete Comput. Geom. 29 (2003), 525–560.
  • D. Lenz and N. Strungaru: Pure point spectrum for measure dynamical systems on locally compact abelian groups, J. Math. Pures Appl. (9) 92 (2009), 323–341.
  • J. Morita: Tilings, Lie theory and combinatorics; in Quantum Affine Algebras, Extended Affine Lie Algebras, and Their Applications, Contemp. Math. 506, Amer. Math. Soc., Providence, RI, 2010, 173–185.
  • J. Morita and A. Terui: Words, tilings and combinatorial spectra, Hiroshima Math. J. 39 (2009), 37–60.
  • R. Penrose: Remarks on tiling: details of a $(1+\epsilon+\epsilon\sp 2)$-aperiodic set; in The Mathematics of Long-Range Aperiodic Order (Waterloo, ON, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 489, Kluwer Acad. Publ., Dordrecht, 1997, 467–497.
  • R. Penrose: Solutions to puzzles in TN41, Twistor Newsletter 42 (1997), 121–126.
  • \begingroup C. Radin: Aperiodic tilings in higher dimensions, Proc. Amer. Math. Soc. 123 (1995), 3543–3548. \endgroup
  • M. Senechal: Quasicrystals and Geometry, Cambridge Univ. Press, Cambridge, 1995.
  • D. Shechtman, I. Blech, D. Gratias and J.W. Cahn: Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53 (1984), 1951–1953. \interlinepenalty10000
  • J.E.S. Socolar and J.M. Taylor: An aperiodic hexagonal tile, J. Combin. Theory Ser. A 118 (2011), 2207–2231.
  • J.E.S. Socolar and J.M. Taylor: Forcing nonperiodicity with a single tile, Math. Intelligencer 34 (2012), 18–28.
  • B. Solomyak: Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems 17 (1997), 695–738.
  • J. Taylor: Aperiodicity of a functional monotile, Preprint (2010), http:// www.math.uni-bielefeld.de/sfb701/files/preprints/sfb10015.pdf