Osaka Journal of Mathematics

Simple ribbon moves for links

Kazuaki Kobayashi, Tetsuo Shibuya, and Tatsuya Tsukamoto

Full-text: Open access

Abstract

We introduce and study local moves for links, called simple ribbon moves. We also introduce a complexity of links, called the $h$-complexity, which coincides with the genus in the case of knots, and we show that simple ribbon moves never reduce the $h$-complexities of links.

Article information

Source
Osaka J. Math., Volume 51, Number 3 (2014), 545-573.

Dates
First available in Project Euclid: 23 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1414090790

Mathematical Reviews number (MathSciNet)
MR3272604

Zentralblatt MATH identifier
1322.57009

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}

Citation

Kobayashi, Kazuaki; Shibuya, Tetsuo; Tsukamoto, Tatsuya. Simple ribbon moves for links. Osaka J. Math. 51 (2014), no. 3, 545--573. https://projecteuclid.org/euclid.ojm/1414090790


Export citation

References

  • T. Ishikawa, K. Kobayashi and T. Shibuya: On Milnor moves and Alexander polynomials of knots, Osaka J. Math. 40 (2003), 845–855.
  • A. Kawauchi: A Survey of Knot Theory, Birkhäuser, Basel, 1996.
  • A. Kawauchi and K. Yoshida: Topology of prion proteins, Journal of Mathematics and System Science, 2 (2012), 237–248.
  • K. Kobayashi: On ribbon moves, unpublished manuscript in Japanese, (2001).
  • H. Murakami and Y. Nakanishi: On a certain move generating link-homology, Math. Ann. 284 (1989), 75–89.
  • K. Murasugi: On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387–422.
  • Y. Nakanishi and T. Shibuya: Link homotopy and quasi self delta-equivalence for links, J. Knot Theory Ramifications 9 (2000), 683–691.
  • D. Rolfsen: Knots and Links, Publish or Perish, Berkeley, CA, 1976.
  • T. Shibuya: Self $\Delta$-equivalence of ribbon links, Osaka J. Math. 33 (1996), 751–760.
  • T. Shibuya: Milnor move and self delta-equivalence for links, Hakone Seminar Notes, (2008).
  • T. Shibuya and T. Tsukamoto: Self delta-equivalence of links obtained by product fusions, Mem. Osaka Inst. Tech. Ser. A 54 (2009), 1–8.
  • T. Shibuya and A. Yasuhara: Boundary links are self delta-equivalent to trivial links, Math. Proc. Cambridge Philos. Soc. 143 (2007), 449–458.