Osaka Journal of Mathematics

On relative height zero Brauer characters

A. Laradji

Full-text: Open access

Abstract

Let $N \triangleleft G$ where $G$ is a finite group and let $B$ be a $p$-block of $G$, where $p$ is a prime. A Brauer character $\psi \in \mathop{\mathrm{IBr}}_{p}(B)$ is said to be of relative height zero with respect to $N$ provided that the height of $\psi$ is equal to that of an irreducible constituent of $\psi_{N}$. Now assume $G$ is $p$-solvable. In this paper, we count the number of relative height zero irreducible Brauer characters of $B$ with respect to $N$ that lie over any given $\varphi \in \mathop{\mathrm{IBr}}_{p}(N)$. As a consequence, we show that if $D$ is a defect group of $B$ and $\hat{B}$ is the unique $p$-block of $NN_{G}(D)$ with defect group $D$ such that $\hat{B}^{G} = B$, then $B$ and $\hat{B}$ have equal numbers of relative height zero irreducible Brauer characters with respect to $N$.

Article information

Source
Osaka J. Math. Volume 50, Number 3 (2013), 591-605.

Dates
First available in Project Euclid: 27 September 2013

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1380287424

Mathematical Reviews number (MathSciNet)
MR3128994

Zentralblatt MATH identifier
1279.20012

Subjects
Primary: 20C15: Ordinary representations and characters
Secondary: 20C20: Modular representations and characters

Citation

Laradji, A. On relative height zero Brauer characters. Osaka J. Math. 50 (2013), no. 3, 591--605.https://projecteuclid.org/euclid.ojm/1380287424


Export citation

References

  • W. Hamernik and G. Michler: On vertices of simple modules in $p$-solvable groups, Mitt. Math. Sem. Giessen Heft 121 (1976), 147–162.
  • I.M. Isaacs: Characters of $\pi$-separable groups, J. Algebra 86 (1984), 98–128.
  • R. Knörr: Blocks, vertices and normal subgroups, Math. Z. 148 (1976), 53–60.
  • A. Laradji: Relative $\pi$-blocks of $\pi$-separable groups, J. Algebra 220 (1999), 449–465.
  • A. Laradji: Relative $\pi$-blocks of $\pi$-separable groups II, J. Algebra 237 (2001), 521–532.
  • A. Laradji: On normal subgroups and height zero Brauer characters in a $p$-solvable group, J. Algebra 295 (2006), 543–561.
  • A. Laradji: On normal subgroups and simple modules with a given vertex in a $p$-solvable group, J. Algebra 308 (2007), 484–492.
  • M. Murai: Normal subgroups and heights of characters, J. Math. Kyoto Univ. 36 (1996), 31–43.
  • H. Nagao and Y. Tsushima: Representations of Finite Groups, Academic Press, Boston, MA, 1989.
  • T. Okuyama: Module correspondence in finite groups, Hokkaido Math. J. 10 (1981), 299–318.
  • A. Watanabe: Normal subgroups and multiplicities of indecomposable modules, Osaka J. Math. 33 (1996), 629–635.