Osaka Journal of Mathematics

A transcendental approach to Kollár's injectivity theorem

Osamu Fujino

Full-text: Open access

Abstract

We treat Kollár's injectivity theorem from the analytic (or differential geometric) viewpoint. More precisely, we give a curvature condition which implies Kollár type cohomology injectivity theorems. Our main theorem is formulated for a compact Kähler manifold, but the proof uses the space of harmonic forms on a Zariski open set with a suitable complete Kähler metric. We need neither covering tricks, desingularizations, nor Leray's spectral sequence.

Article information

Source
Osaka J. Math. Volume 49, Number 3 (2012), 833-852.

Dates
First available in Project Euclid: 15 October 2012

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1350306598

Mathematical Reviews number (MathSciNet)
MR2993068

Zentralblatt MATH identifier
1270.32004

Subjects
Primary: 32L10: Sheaves and cohomology of sections of holomorphic vector bundles, general results [See also 14F05, 18F20, 55N30]
Secondary: 32W05: $\overline\partial$ and $\overline\partial$-Neumann operators

Citation

Fujino, Osamu. A transcendental approach to Kollár's injectivity theorem. Osaka J. Math. 49 (2012), no. 3, 833--852. https://projecteuclid.org/euclid.ojm/1350306598.


Export citation

References

  • J.-P. Demailly: Estimations $L^{2}$ pour l'opérateur $\bar{\partial}$ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), 457–511.
  • J.-P. Demailly: Cohomology of $q$-convex spaces in top degrees, Math. Z. 204 (1990), 283–295.
  • J.-P. Demailly: Transcendental proof of a generalized Kawamata–Viehweg vanishing theorem; in Geometrical and Algebraical Aspects in Several Complex Variables (Cetraro, 1989), Sem. Conf. 8, EditEl, Rende, 81–94, 1991.
  • J.-P. Demailly: Multiplier ideal sheaves and analytic methods in algebraic geometry; in School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000), ICTP Lect. Notes 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 1–148, 2001.
  • L. Ein and M. Popa: Global division of cohomology classes via injectivity, Michigan Math. J. 57 (2008), 249–259.
  • I. Enoki: Kawamata–Viehweg vanishing theorem for compact Kähler manifolds; in Einstein Metrics and Yang–Mills Connections (Sanda, 1990), Lecture Notes in Pure and Appl. Math. 145, Dekker, New York, 59–68, 1993.
  • H. Esnault and E. Viehweg: Lectures on Vanishing Theorems, DMV Seminar 20, Birkhäuser, Basel, 1992.
  • O. Fujino: A transcendental approach to Kollár's injectivity theorem II, J. Reine Angew. Math., to appear.
  • O. Fujino: On Kollár's injectivity theorem, Sūrikaisekikenkyūsho Kōkyūroku 1550 (2007), 131–140, (Japanese).
  • O. Fujino: Multiplication maps and vanishing theorems for toric varieties, Math. Z. 257 (2007), 631–641.
  • O. Fujino: Vanishing theorems for toric polyhedra; in Higher Dimensional Algebraic Varieties and Vector Bundles, RIMS Kôkyûroku Bessatsu, B9, Res. Inst. Math. Sci. (RIMS), Kyoto, 81–95, 2008.
  • O. Fujino: On injectivity, vanishing and torsion-free theorems for algebraic varieties, Proc. Japan Acad. Ser. A Math. Sci. 85 (2009), 95–100.
  • O. Fujino: Effective base point free theorem for log canonical pairs–-Kollár type theorem, Tohoku Math. J. (2) 61 (2009), 475–481.
  • O. Fujino: Effective base point free theorem for log canonical pairs, II, Angehrn–Siu type theorems, Michigan Math. J. 59 (2010), 303–312.
  • \begingroup O. Fujino: Theory of non-lc ideal sheaves: basic properties, Kyoto J. Math. 50 (2010), 225–245. \endgroup
  • O. Fujino: Non-vanishing theorem for log canonical pairs, J. Algebraic Geom. 20 (2011), 771–783.
  • O. Fujino: Introduction to the theory of quasi-log varieties; in Classification of Algebraic Varieties, EMS Ser. Congr. Rep. Eur. Math. Soc., Zürich, 289–303, 2010.
  • O. Fujino: Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci. 47 (2011), 727–789.
  • O. Fujino: Introduction to the log minimal model program for log canonical pairs, preprint (2009). arXiv:0907.1506v1.
  • O. Fujino: Minimal model theory for log surfaces, Publ. Res. Inst. Math. Sci. 48 (2012), 339–371.
  • O. Fujino: Basepoint-free theorems: saturation, b-divisors, and canonical bundle formula, Algebra Number Theory 6 (2012), 797–823.
  • O. Fujino, K. Schwede and S. Takagi: Supplements to non-lc ideal sheaves; in Higher Dimensional Algebraic Geometry, RIMS Kôkyûroku Bessatsu, B24 Res. Inst. Math. Sci. (RIMS), Kyoto, 1–46, 2011.
  • S. Fukuda: On numerically effective log canonical divisors, Int. J. Math. Math. Sci. 30 (2002), 521–531.
  • R.C. Gunning and H. Rossi: Analytic Functions of Several Complex Variables, Prentice Hall, Englewood Cliffs, NJ, 1965.
  • L. Hörmander: $L^{2}$ estimates and existence theorems for the $\bar{\partial}$ operator, Acta Math. 113 (1965), 89–152.
  • L. Kaup and B. Kaup: Holomorphic Functions of Several Variables, translated from the German by Michael Bridgland, de Gruyter Studies in Mathematics 3, de Gruyter, Berlin, 1983.
  • Y. Kawamata: Pluricanonical systems on minimal algebraic varieties, Invent. Math. 79 (1985), 567–588.
  • J. Kollár: Higher direct images of dualizing sheaves, I, Ann. of Math. (2) 123 (1986), 11–42.
  • J. Kollár: Shafarevich Maps and Automorphic Forms, M.B. Porter Lectures, Princeton Univ. Press, Princeton, NJ, 1995.
  • J. Kollár and S. Mori; Birational Geometry of Algebraic Varieties, translated from the 1998 Japanese original, Cambridge Tracts in Mathematics 134, Cambridge Univ. Press, Cambridge, 1998.
  • R. Lazarsfeld: Positivity in Algebraic Geometry, II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., A Series of Modern Surveys in Mathematics 49, Springer, Berlin, 2004.
  • \begingroup A.M. Nadel: Multiplier ideal sheaves and existence of Kähler–Einstein metrics of positive scalar curvature, Proc. Nat. Acad. Sci. U.S.A. 86 (1989), 7299–7300. \endgroup
  • N. Nakayama: Zariski-Decomposition and Abundance, MSJ Memoirs 14, Math. Soc. Japan, Tokyo, 2004.
  • T. Ohsawa: Analysis of Several Complex Variables, translated from the Japanese by Shu Gilbert Nakamura, Translations of Mathematical Monographs 211, Amer. Math. Soc., Providence, RI, 2002.
  • T. Ohsawa: On a curvature condition that implies a cohomology injectivity theorem of Kollár–Skoda type, Publ. Res. Inst. Math. Sci. 41 (2005), 565–577.
  • Y.T. Siu: A vanishing theorem for semipositive line bundles over non-Kähler manifolds, J. Differential Geom. 19 (1984), 431–452.
  • K. Takegoshi: Higher direct images of canonical sheaves tensorized with semi-positive vector bundles by proper Kähler morphisms, Math. Ann. 303 (1995), 389–416.
  • S.G. Tankeev: On $n$-dimensional canonically polarized varieties and varieties of fundamental type, Math. USSR-Izv. 5 (1971), 29–43.