Osaka Journal of Mathematics

Twisted cohomology for hyperbolic three manifolds

Pere Menal-Ferrer and Joan Porti

Full-text: Open access

Abstract

For a complete hyperbolic three manifold $M$, we consider the representations of $\pi_{1}(M)$ obtained by composing a lift of the holonomy with complex finite dimensional representations of $\mathrm{SL}(2,\mathbf{C})$. We prove a vanishing result for the cohomology of $M$ with coefficients twisted by these representations, using techniques of Matsushima--Murakami. We give some applications to local rigidity.

Article information

Source
Osaka J. Math., Volume 49, Number 3 (2012), 741-769.

Dates
First available in Project Euclid: 15 October 2012

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1350306595

Mathematical Reviews number (MathSciNet)
MR2993065

Zentralblatt MATH identifier
1255.57018

Subjects
Primary: 57M50: Geometric structures on low-dimensional manifolds
Secondary: 20C15: Ordinary representations and characters

Citation

Menal-Ferrer, Pere; Porti, Joan. Twisted cohomology for hyperbolic three manifolds. Osaka J. Math. 49 (2012), no. 3, 741--769. https://projecteuclid.org/euclid.ojm/1350306595


Export citation

References

  • I. Agol: Tameness of hyperbolic 3-manifolds, preprint..
  • A. Andreotti and E. Vesentini: Carleman estimates for the Laplace–Beltrami equation on complex manifolds, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 81–130.
  • M. Artin: On the solutions of analytic equations, Invent. Math. 5 (1968), 277–291.
  • M. Boileau and J. Porti: Geometrization of 3-Orbifolds of Cyclic Type, Astérisque 272, 2001.
  • F. Bonahon: Cobordism of automorphisms of surfaces, Ann. Sci. École Norm. Sup. (4) 16 (1983), 237–270.
  • A. Borel and N.R. Wallach: Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Annals of Mathematics Studies 94, Princeton Univ. Press, Princeton, NJ, 1980.
  • K. Bromberg: Rigidity of geometrically finite hyperbolic cone-manifolds, Geom. Dedicata 105 (2004), 143–170.
  • D. Calegari: Real places and torus bundles, Geom. Dedicata 118 (2006), 209–227.
  • D. Calegari and D. Gabai: Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2006), 385–446.
  • M. Culler: Lifting representations to covering groups, Adv. in Math. 59 (1986), 64–70.
  • W. Fulton and J. Harris: Representation Theory, Graduate Texts in Mathematics 129, Springer, New York, 1991.
  • H. Garland: A rigidity theorem for discrete subgroups, Trans. Amer. Math. Soc. 129 (1967), 1–25.
  • W.M. Goldman: Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986), 263–302.
  • M. Heusener and J. Porti: The variety of characters in $\mathrm{PSL}_{2}(\mathbb{C})$, Bol. Soc. Mat. Mexicana (3) 10 (2004), Special Issue, 221–237.
  • M. Heusener and J. Porti: Deformations of reducible representations of 3-manifold groups into $\mathrm{PSL}_{2}(\mathbb{C})$, Algebr. Geom. Topol. 5 (2005), 965–997.
  • C.D. Hodgson and S.P. Kerckhoff: Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998), 1–59.
  • C.D. Hodgson and S.P. Kerckhoff: Universal bounds for hyperbolic Dehn surgery, Ann. of Math. (2) 162 (2005), 367–421.
  • M. Kapovich: Hyperbolic Manifolds and Discrete Groups, Progress in Mathematics 183, Birkhäuser Boston, Boston, MA, 2001.
  • S. Kobayashi and K. Nomizu: Foundations of Differential Geometry, I, reprint of the 1963 original, Wiley Classics Library, Wiley, New York, 1996.
  • A. Lubotzky and A.R. Magid: Varieties of Representations of Finitely Generated Groups, Mem. Amer. Math. Soc. 58, 1985.
  • Y. Matsushima and S. Murakami: On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math. (2) 78 (1963), 365–416.
  • D. McCullough and A. Miller: Homeomorphisms of $3$-Manifolds with Compressible Boundary, Mem. Amer. Math. Soc. 61, 1986.
  • K. Nomizu: Lie Groups and Differential Geometry, The Mathematical Society of Japan, 1956.
  • M.S. Raghunathan: On the first cohomology of discrete subgroups of semisimple Lie groups, Amer. J. Math. 87 (1965), 103–139.
  • M.S. Raghunathan: Discrete Subgroups of Lie Groups, Springer, New York, 1972.
  • W.P. Thurston. The Geometry and Topology of Three-Manifolds, Princeton University, http: //www.msri.org/publications/books/gt3m/.
  • A. Weil: Remarks on the cohomology of groups, Ann. of Math. (2) 80 (1964), 149–157.
  • H. Weiss: Local rigidity of 3-dimensional cone-manifolds, J. Differential Geom. 71 (2005), 437–506.