Osaka Journal of Mathematics

On vector valued Siegel modular forms of degree 2 with small levels

Hiroki Aoki

Full-text: Open access

Abstract

In this paper, we show that the space of vector valued Siegel modular forms of $\Gamma_{0} (N) \subset \mathrm{Sp}(2, \mathbb{Z})$ with respect to the symmetric tensor of degree $2$ has a simple unified structure for $N=2,3,4$. Each structure is similar to the structure of the full modular group.

Article information

Source
Osaka J. Math., Volume 49, Number 3 (2012), 625-651.

Dates
First available in Project Euclid: 15 October 2012

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1350306590

Mathematical Reviews number (MathSciNet)
MR2993060

Zentralblatt MATH identifier
1256.11033

Subjects
Primary: 11F46: Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms
Secondary: 11F60: Hecke-Petersson operators, differential operators (several variables)

Citation

Aoki, Hiroki. On vector valued Siegel modular forms of degree 2 with small levels. Osaka J. Math. 49 (2012), no. 3, 625--651. https://projecteuclid.org/euclid.ojm/1350306590


Export citation

References

  • H. Aoki: Estimating Siegel modular forms of genus 2 using Jacobi forms, J. Math. Kyoto Univ. 40 (2000), 581–588.
  • H. Aoki: Vector valued Siegel modular forms with small levels; in Automorphic Representations, Automorphic Forms, L-functions, and Related Topics (Kyoto, 2008), Sūrikaisekikenkyūsho Kōkyūroku 1617, Res. Inst. Math. Sci. (RIMS), Kyoto, 167–177, 2008.
  • H. Aoki and T: Ibukiyama, Simple graded rings of Siegel modular forms, differential operators and Borcherds products, Internat. J. Math. 16 (2005), 249–279.
  • G. van der Geer: Siegel modular forms and their applications; in The 1-2-3 of Modular Forms, Universitext Springer, Berlin, 181–245, 2008.
  • W. Eholzer and T. Ibukiyama: Rankin–Cohen type differential operators for Siegel modular forms, Internat. J. Math. 9 (1998), 443–463.
  • S. Hayashida and T. Ibukiyama: Siegel modular forms of half integral weight and a lifting conjecture, J. Math. Kyoto Univ. 45 (2005), 489–530.
  • T. Ibukiyama: On Siegel modular varieties of level $3$, Internat. J. Math. 2 (1991), 17–35.
  • T. Ibukiyama: On differential operators on automorphic forms and invariant pluri-harmonic polynomials, Comment. Math. Univ. St. Paul. 48 (1999), 103–118.
  • T. Ibukiyama: Differential operators and structures of vector valued Siegel modular forms; in Algebraic Number Theory and Related Topics (Kyoto, 2000) Sūrikaisekikenkyūsho Kōkyūroku 1200, Res. Inst. Math. Sci. (RIMS), 71–81, 2001, (Japanese).
  • J. Igusa: On Siegel modular forms of genus two, Amer. J. Math. 84 (1962), 175–200.
  • J. Igusa: On Siegel modular forms genus two, II, Amer. J. Math. 86 (1964), 392–412.
  • T. Satoh: On certain vector valued Siegel modular forms of degree two, Math. Ann. 274 (1986), 335–352.
  • E. Witt: Eine Identität zwischen Modulformen zweiten Grades, Abh. Math. Sem. Hansischen Univ. 14 (1941), 323–337.