Osaka Journal of Mathematics

A new look at Condition A

Quo-Shin Chi

Full-text: Open access

Abstract

Ozeki and Takeuchi [14] introduced the notion of Condition A and Condition B to construct two classes of inhomogeneous isoparametric hypersurfaces with four principal curvatures in spheres, which were later generalized by Ferus, Karcher and Münzner to many more examples via the Clifford representations; we will refer to these examples of Ozeki and Takeuchi and of Ferus, Karcher and Münzner collectively as OT-FKM type throughout the paper. Dorfmeister and Neher [5] then employed isoparametric triple systems [3, 4], which are algebraic in nature, to prove that Condition A alone implies the isoparametric hypersurface is of OT-FKM type. Their proof for the case of multiplicity pairs $\{3, 4\}$ and $\{7, 8\}$ rests on a fairly involved algebraic classification result [9] about composition triples. In light of the classification [2] that leaves only the four exceptional multiplicity pairs $\{4, 5\}, \{3, 4\}, \{7, 8\}$ and $\{6, 9\}$ unsettled, it appears that Condition A may hold the key to the classification when the multiplicity pairs are $\{3, 4\}$ and $\{7, 8\}$. Thus Condition A deserves to be scrutinized and understood more thoroughly from different angles. In this paper, we give a fairly short and rather straightforward proof of the result of Dorfmeister and Neher, with emphasis on the multiplicity pairs $\{3, 4\}$ and $\{7, 8\}$, based on more geometric considerations. We make it explicit and apparent that the octonion algebra governs the underlying isoparametric structure.

Article information

Source
Osaka J. Math., Volume 49, Number 1 (2012), 133-166.

Dates
First available in Project Euclid: 21 March 2012

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1332337242

Mathematical Reviews number (MathSciNet)
MR2903258

Zentralblatt MATH identifier
1246.53078

Subjects
Primary: 53C40: Global submanifolds [See also 53B25]

Citation

Chi, Quo-Shin. A new look at Condition A. Osaka J. Math. 49 (2012), no. 1, 133--166. https://projecteuclid.org/euclid.ojm/1332337242


Export citation

References

  • E. Cartan: Sur des familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z. 45 (1939), 335–367.
  • T.E. Cecil, Q.-S. Chi and G.R. Jensen: Isoparametric hypersurfaces with four principal curvatures, Ann. of Math. (2) 166 (2007), 1–76.
  • J. Dorfmeister and E. Neher: An algebraic approach to isoparametric hypersurfaces in spheres, I, Tôhoku Math. J. (2) 35 (1983), 187–224.
  • J. Dorfmeister and E. Neher: An algebraic approach to isoparametric hypersurfaces in spheres, II, Tôhoku Math. J. (2) 35 (1983), 225–247.
  • J. Dorfmeister and E. Neher: Isoparametric triple systems of algebra type, Osaka J. Math. 20 (1983), 145–175.
  • J. Dorfmeister and E. Neher: Isoparametric triple systems of FKM-type, II, Manuscripta Math. 43 (1983), 13–44.
  • D. Ferus, H. Karcher and H.F. Münzner: Cliffordalgebren und neue isoparametrische Hyperflächen, Math. Z. 177 (1981), 479–502.
  • D. Husemoller: Fibre Bundles, third edition, Graduate Texts in Mathematics 20, Springer, New York, 1994.
  • K. McCrimmon: Quadratic forms permitting triple composition, Trans. Amer. Math. Soc. 275 (1983), 107–130.
  • R. Miyaoka: The Dorfmeister–Neher theorem on isoparametric hypersurfaces, Osaka J. Math. 46 (2009), 695–715.
  • R. Miyaoka: Isoparametric hypersurfaces with $(g,m)=(6,2)$, preprint.
  • H.F. Münzner: Isoparametrische Hyperflächen in Sphären, Math. Ann. 251 (1980), 57–71.
  • H.F. Münzner: Isoparametrische Hyperflächen in Sphären, II, Math. Ann. 256 (1981), 215–232.
  • H. Ozeki and M. Takeuchi: On some types of isoparametric hypersurfaces in spheres, I, Tôhoku Math. J. (2) 27 (1975), 515–559.
  • \begingroup H. Ozeki and M. Takeuchi: On some types of isoparametric hypersurfaces in spheres, II, Tôhoku Math. J. (2) 28 (1976), 7–55. \endgroup
  • S. Stolz: Multiplicities of Dupin hypersurfaces, Invent. Math. 138 (1999), 253–279.