Osaka Journal of Mathematics

Blocks of category $\mathcal{O}$ for rational Cherednik algebras and of cyclotomic Hecke algebras of type $G(r,p,n)$

Kentaro Wada

Full-text: Open access

Abstract

We classify blocks of category $\mathcal{O}$ for rational Cherednik algebras and of cyclotomic Hecke algebras of type $G(r,p,n)$ by using the ``residue equivalence'' for multi-partitions.

Article information

Source
Osaka J. Math., Volume 48, Number 4 (2011), 895-912.

Dates
First available in Project Euclid: 11 January 2012

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1326291210

Mathematical Reviews number (MathSciNet)
MR2871286

Zentralblatt MATH identifier
1250.20003

Subjects
Primary: 20C08: Hecke algebras and their representations
Secondary: 20C20: Modular representations and characters 05E10: Combinatorial aspects of representation theory [See also 20C30]

Citation

Wada, Kentaro. Blocks of category $\mathcal{O}$ for rational Cherednik algebras and of cyclotomic Hecke algebras of type $G(r,p,n)$. Osaka J. Math. 48 (2011), no. 4, 895--912. https://projecteuclid.org/euclid.ojm/1326291210


Export citation

References

  • S. Ariki: On the semi-simplicity of the Hecke algebra of $(\mathbf{Z}/r\mathbf{Z})\wr \mathfrak{S}_{n}$, J. Algebra 169 (1994), 216–225.
  • S. Ariki: Representation theory of a Hecke algebra of $G(r,p,n)$, J. Algebra 177 (1995), 164–185.
  • \begingroup S. Ariki: On the classification of simple modules for cyclotomic Hecke algebras of type $G(m,1,n)$ and Kleshchev multipartitions, Osaka J. Math. 38 (2001), 827–837. \endgroup
  • M. Broué, G. Malle and R. Rouquier: Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998), 127–190.
  • R. Dipper, G. James and A. Mathas: Cyclotomic $q$-Schur algebras, Math. Z. 229 (1998), 385–416.
  • S. Donkin, The $q$-Schur Algebra, London Mathematical Society Lecture Note Series 253, Cambridge Univ. Press, Cambridge, 1998.
  • P. Etingof and V. Ginzburg: Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), 243–348.
  • G. Genet and N. Jacon: Modular representations of cyclotomic Hecke algebras of type $G(r,p,n)$, Int. Math. Res. Not. (2006), 1–18.
  • V. Ginzburg, N. Guay, E. Opdam and R. Rouquier: On the category $\mathcal{O}$ for rational Cherednik algebras, Invent. Math. 154 (2003), 617–651.
  • J.J. Graham and G.I. Lehrer: Cellular algebras, Invent. Math. 123 (1996), 1–34.
  • N. Guay: Projective modules in the category $\mathcal{O}$ for the Cherednik algebra, J. Pure Appl. Algebra 182 (2003), 209–221.
  • J. Hu: A Morita equivalence theorem for Hecke algebra $\mathcal{H}_{q}(D_{n})$ when $n$ is even, Manuscripta Math. 108 (2002), 409–430.
  • J. Hu: Crystal bases and simple modules for Hecke algebra of type $D_{n}$, J. Algebra 267 (2003), 7–20.
  • J. Hu: Modular representations of Hecke algebras of type $G(p,p,n)$, J. Algebra 274 (2004), 446–490.
  • J. Hu: Crystal bases and simple modules for Hecke algebras of type $G(p,p,n)$, Represent. Theory 11 (2007), 16–44.
  • J. Hu: The number of simple modules for the Hecke algebras of type $G(r,p,n)$, J. Algebra 321 (2009), 3375–3396.
  • S. Lyle and A. Mathas: Blocks of cyclotomic Hecke algebras, Adv. Math. 216 (2007), 854–878.
  • A. Matahs: The representation theory of the Ariki–Koike and cyclotomic $q$-Schur algebras; In Representation Theory of Algebraic Groups and Quantum Groups, Adv. Stud. Pure Math. 40, Math. Soc. Japan, Tokyo, 261–320, 2004.
  • A. Mathas: Iwahori–Hecke Algebras and Schur Algebras of the Symmetric Group, University Lecture Series 15, Amer. Math. Soc., Providence, RI, 1999.
  • A. Ram: Seminormal representations of Weyl groups and Iwahori–Hecke algebras, Proc. London Math. Soc. (3) 75 (1997), 99–133.
  • R. Rouquier: $q$-Schur algebras and complex reflection groups, Mosc. Math. J. 8 (2008), 119–158.