Osaka Journal of Mathematics

On weighted complex Randers metrics

Pit-Mann Wong and Chunping Zhong

Full-text: Open access

Abstract

In this paper we introduce the weighted complex Randers metric $F=h+\sum_{i=1}^{m}\lvert B_{i}\rvert^{1/i}$ on a complex manifold $M$, here $h$ is a Hermitian metric on $M$ and $B_{i}$, $i=1,\ldots, m$ are holomorphic symmetric forms of weights $i$ on $M$, respectively. These metrics are special case of jet metric studied in Chandler--Wong [6]. Our main theorem is that the holomorphic sectional curvature $\mathrm{hbsc}_{F}$ of $F$ is always less or equal to $\mathrm{hbsc}_{h}$. Using this result we obtain a rigidity result, that is, a compact complex manifold $M$ of complex dimension $n$ with a weighted complex Randers metric $F$ of positive constant holomorphic sectional curvature is isomorphic to $\mathbb{P}^{n}$.

Article information

Source
Osaka J. Math., Volume 48, Number 3 (2011), 589-612.

Dates
First available in Project Euclid: 26 September 2011

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1317044937

Mathematical Reviews number (MathSciNet)
MR2837671

Zentralblatt MATH identifier
1228.53087

Subjects
Primary: 53C60: Finsler spaces and generalizations (areal metrics) [See also 58B20] 53C56: Other complex differential geometry [See also 32Cxx] 32Q10: Positive curvature manifolds

Citation

Wong, Pit-Mann; Zhong, Chunping. On weighted complex Randers metrics. Osaka J. Math. 48 (2011), no. 3, 589--612. https://projecteuclid.org/euclid.ojm/1317044937


Export citation

References

  • N. Aldea: Complex Finsler spaces of constant holomorphic curvature; in Differential Geometry and Its Applications, Matfyzpress, Prague, 179–190, 2005.
  • N. Aldea: On holomorphic curvature of $\eta$-Einstein complex Finsler spaces, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 51 (99) (2008), 265–277.
  • N. Aldea and G. Munteanu: On complex Finsler spaces with Randers metric, J. Korean Math. Soc. 46 (2009), 949–966.
  • D. Bao, S.-S. Chern and Z. Shen: An Introduction to Riemann–Finsler Geometry, Graduate Texts in Mathematics 200, Springer, New York, 2000.
  • J.-G. Cao and P.-M. Wong: Finsler geometry of projectivized vector bundles, J. Math. Kyoto Univ. 43 (2003), 369–410.
  • K. Chandler and P.-M. Wong: Finsler geometry of holomorphic jet bundles; in A Sampler of Riemann–Finsler Geometry, Math. Sci. Res. Inst. Publ. 50, Cambridge Univ. Press, Cambridge, 107–196, 2004.
  • Z. Chang: Finsler Geometry vs. Dark Matter and dark Energy Hypothesis, Lecture presented at the International Workshop on Finsler Geometry, Minjiang University, Fuzhou, China July 12–15, 2009.
  • B. Chen and Y.B. Shen: On complex Randers metrics, Internat. J. Math. 21 (2010), 971–986.
  • S.S. Chern: Complex Manifolds without Potential Theory, second edition, Springer, New York, 1979.
  • S. Mori: Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), 593–606.
  • H.L. Royden: Complex Finsler metrics; in Complex Differential Geometry and Nonlinear Differential Equations (Brunswick, Maine, 1984), Contemp. Math. 49, Amer. Math. Soc., Providence, RI, 119–124, 1986.
  • H. Rund: Generalized metrics on complex manifolds, Math. Nachr. 34 (1967), 55–77.
  • P.-M. Wong: Complex Finsler–Einstein Manifolds, Lecture at the International Conference on Finsler Geometry and General Relativity, Cairo, Egypt, November 4–10, 2006.
  • P.-M. Wong: A survey of complex Finsler geometry; in Finsler Geometry, Sapporo 2005–-in memory of Makoto Matsumoto, Adv. Stud. Pure Math. 48, Math. Soc. Japan, Tokyo, 375–433, 2007.
  • P.-M. Wong: Torsion and Curvature in Complex Finsler Geometry, Lecture presented at the International Workshop on Finsler Geometry, Minjiang University, Fuzhou, China July 12–15, 2009.
  • P.-M. Wong: Some Remarks on the Future Directions in Nevanlinna Theory and Complex Finsler Geometry, Lecture at National Center of Theoretical Science (July 27–30, 2009), Hsinchu, Taiwan and at Workshop on Complex Geometry (Ausgust 3–4, 2009), Academia Sinica, Taiwan, 2009.