Osaka Journal of Mathematics

On the existence of unramified $p$-extensions with prescribed Galois group

Akito Nomura

Full-text: Open access

Abstract

We shall prove that for any finite $p$-group $G$, there exists an elementary abelian $p$-extension $k/\mathbf{Q}$ and an unramified extension $K/k$ such that the Galois group $\mathrm{Gal}(K/k)$ is isomorphic to $G$.

Article information

Source
Osaka J. Math., Volume 47, Number 4 (2010), 1159-1165.

Dates
First available in Project Euclid: 20 December 2010

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1292854319

Mathematical Reviews number (MathSciNet)
MR2791562

Zentralblatt MATH identifier
1268.12003

Subjects
Primary: 12F12: Inverse Galois theory 11R29: Class numbers, class groups, discriminants

Citation

Nomura, Akito. On the existence of unramified $p$-extensions with prescribed Galois group. Osaka J. Math. 47 (2010), no. 4, 1159--1165. https://projecteuclid.org/euclid.ojm/1292854319


Export citation

References

  • G. Cornell: Abhyankar's lemma and the class group; in Number Theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979), Lecture Notes in Math. 751, Springer, Berlin, 82--88, 1979.
  • A. Fröhlich: On non-ramified extensions with prescribed Galois group, Mathematika 9 (1962), 133--134.
  • Y. Furuta: The genus field and genus number in algebraic number fields, Nagoya Math. J. 29 (1967), 281--285.
  • K. Hoechsmann: Zum Einbettungsproblem, J. Reine Angew. Math. 229 (1968), 81--106.
  • J. Neukirch: Über das Einbettungsproblem der algebraischen Zahlentheorie, Invent. Math. 21 (1973), 59--116.
  • A. Nomura: On embedding problems with restricted ramifications, Arch. Math. (Basel) 73 (1999), 199--204.
  • M. Ozaki: Construction of maximal unramified $p$-extensions with prescribed Galois groups, to appear in Invent. Math.
  • H. Reichardt, Konstruction vom Zahlkörpern mit gegebener Galoisgruppe von Primzahlpotenzordnung, J. Reine Angew. Math. 177 (1937), 1--5.
  • A. Scholz, Konstruktion algebraischer Zahlkörper mit beliebiger Gruppe von Primzahlpotenzordnung I, Math. Z. 42 (1936), 161--188.
  • I.R. Shafarevich, Extensions with given points of ramification, Amer. Math. Soc. Translation, Ser. 2 59 (1966), 128--149.
  • K. Uchida: Unramified extensions of quadratic number fields II, Tôhoku Math. J. (2) 22 (1970), 220--224.
  • K. Uchida: Galois groups of unramified solvable extensions, Tôhoku Math. J. (2) 34 (1982), 311--317.
  • Y. Yamamoto: On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57--76.