Osaka Journal of Mathematics

Molecular decomposition of the modulation spaces

Masaharu Kobayashi and Yoshihiro Sawano

Full-text: Open access

Abstract

The aim of this paper is to develop a theory of decomposition in the weighted modulation spaces $M_{p,q}^{s,W}$ with $0 < p,q \le \infty$, $s \in \mathbb{R}$ and $W \in A_{\infty}$, where $W$ belongs to the class of $A_{\infty}$ defined by Muckenhoupt. For this purpose we shall define molecules for the modulation spaces. As an application we give a simple proof of the boundedness of the pseudo-differential operators with symbols in $M_{\infty,\min(1,p,q)}^{0}$. We shall deal with dual spaces as well.

Article information

Source
Osaka J. Math., Volume 47, Number 4 (2010), 1029-1053.

Dates
First available in Project Euclid: 20 December 2010

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1292854316

Mathematical Reviews number (MathSciNet)
MR2791565

Zentralblatt MATH identifier
1211.42021

Subjects
Primary: 42B35: Function spaces arising in harmonic analysis
Secondary: 41A17: Inequalities in approximation (Bernstein, Jackson, Nikol s kii-type inequalities)

Citation

Kobayashi, Masaharu; Sawano, Yoshihiro. Molecular decomposition of the modulation spaces. Osaka J. Math. 47 (2010), no. 4, 1029--1053. https://projecteuclid.org/euclid.ojm/1292854316


Export citation

References

  • R. Balan, P.G. Casazza, C. Heil and Z. Landau: Density, overcompleteness, and localization of frames, II, Gabor systems, J. Fourier Anal. Appl. 12 (2006), 309–344.
  • Á. Bényi, K. Gröchenig, K. Okoudjou and L. Rogers: Unimodular Fourier multipliers for modulation spaces, J. Funct. Anal. 246 (2007), 366–384.
  • B. Wang and C. Huang: Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations, J. Differential Equations 239 (2007), 213–250.
  • A.-P. Calderón and R. Vaillancourt: On the boundedness of pseudo-differential operators, J. Math. Soc. Japan 23 (1971), 374–378.
  • M. Frazier and B. Jawerth: A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34–170.
  • H.G. Feichtinger: Modulation spaces on locally compact abelian groups; in M. Krishna, R. Radha and S. Thangavelu (Eds.): Wavelets and Their Applications, Chennai, India, Allied Publishers, New Delhi, 99–140, 2003, updated version of a technical report, University of Vienna, 1983.
  • H.G. Feichtinger: Atomic characterizations of modulation spaces through Gabor-type representations, Constructive Function Theory–-86 Conference (Edmonton, AB, 1986), Rocky Mountain J. Math. 19 (1989), 113–125.
  • H.G. Feichtinger: Gewichtsfunktionen auf lokalkompakten Gruppen, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 188 (1979), 451–471.
  • H.G. Feichtinger and K. Gröchenig: Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view; in Wavelets, Academic Press, Boston, MA, 359–397, 1992.
  • H.G. Feichtinger and K. Gröchenig: Gabor frames and time-frequency analysis of distributions, J. Funct. Anal. 146 (1997), 464–495.
  • Y.V. Galperin and S. Samarah: Time-frequency analysis on modulation spaces $M^{p,q}_{m}$, $0 < p, q \leq \infty$, Appl. Comput. Harmon. Anal. 16 (2004), 1–18.
  • K. Gröchenig: Foundations of Time-Frequency Analysis, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Boston, MA, 2001.
  • K. Gröchenig: Composition and spectral invariance of pseudodifferential operators on modulation spaces, J. Anal. Math. 98 (2006), 65–82.
  • K. Gröchenig: Time-frequency analysis of Sjöstrand's class, Rev. Mat. Iberoam. 22 (2006), 703–724.
  • K. Gröchenig: Weight functions in time-frequency analysis; in Pseudo-Differential Operators: Partial Differential Equations and Time-Frequency Analysis, Fields Inst. Commun. 52, Amer. Math. Soc., Providence, RI, 343–366, 2007.
  • K. Gröchenig and C. Heil: Modulation spaces and pseudodifferential operators, Integral Equations Operator Theory 34 (1999), 439–457.
  • K. Gröchenig and Z. Rzeszotnik: Banach algebras of pseudodifferential operators and their almost diagonalization, Ann. Inst. Fourier (Grenoble) 58 (2008), 2279–2314.
  • M. Kobayashi: Modulation spaces $M^{p,q}$ for $0 < p, q \leq \infty$, J. Funct. Spaces Appl. 4 (2006), 329–341.
  • M. Kobayashi: Dual of modulation spaces, J. Funct. Spaces Appl. 5 (2007), 1–8.
  • B. Muckenhoupt: Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.
  • B. Muckenhoupt: The equivalence of two conditions for weight functions, Studia Math. 49 (1973/74), 101–106.
  • J. Sjöstrand: An algebra of pseudodifferential operators, Math. Res. Lett. 1 (1994), 185–192.
  • M. Sugimoto and N. Tomita: A counterexample for boundedness of pseudo-differential operators on modulation spaces, Proc. Amer. Math. Soc. 136 (2008), 1681–1690.
  • M. Sugimoto and N. Tomita: Boundedness properties of pseudo-differential and Calderón–Zygmund operators on modulation spaces, J. Fourier Anal. Appl. 14 (2008), 124–143.
  • K. Tachizawa: The boundedness of pseudodifferential operators on modulation spaces, Math. Nachr. 168 (1994), 263–277.
  • H. Triebel: Modulation spaces on the Euclidean $n$-space, Z. Anal. Anwendungen 2 (1983), 443–457.
  • H. Triebel: Theory of Function Spaces, Birkhäuser, Basel, 1983.
  • H. Triebel: Theory of Function Spaces, II, Birkhäuser, Basel, 1992.