Osaka Journal of Mathematics

An integral invariant from the knot group

Teruhisa Kadokami and Zhiqing Yang

Full-text: Open access

Abstract

For a knot $K$ in $S^{3}$, J. Ma and R. Qiu defined an integral invariant $a(K)$ which is the minimal number of elements that generate normally the commutator subgroup of the knot group, and showed that it is a lower bound of the unknotting number. We prove that it is also a lower bound of the tunnel number. If the invariant were additive under connected sum, then we could deduce something about additivity of both the unknotting numbers and the tunnel numbers. However, we found a sequence of examples that the invariant is not additive under connected sum. Let $T(2, p)$ be the $(2, p)$-torus knot, and $K_{p, q}=T(2, p) \sharp T(2, q)$. Then we have $a(K_{p, q})=1$ if and only if $\gcd(p, q)= 1$.

Article information

Source
Osaka J. Math., Volume 47, Number 4 (2010), 965-976.

Dates
First available in Project Euclid: 20 December 2010

Permanent link to this document
https://projecteuclid.org/euclid.ojm/1292854314

Mathematical Reviews number (MathSciNet)
MR2791567

Zentralblatt MATH identifier
1221.57005

Subjects
Primary: 57M05: Fundamental group, presentations, free differential calculus 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45} 57M27: Invariants of knots and 3-manifolds

Citation

Kadokami, Teruhisa; Yang, Zhiqing. An integral invariant from the knot group. Osaka J. Math. 47 (2010), no. 4, 965--976. https://projecteuclid.org/euclid.ojm/1292854314


Export citation

References

  • J.C. Cha and C. Livingston: KnotInfo, http://www.indiana.edu/~knotinfo/.
  • F. Hosokawa, T. Maeda and S. Suzuki: Numerical invariants of surfaces in $4$-space, Math. Sem. Notes Kobe Univ. 7 (1979), 409--420.
  • A. Ishii: Moves and invariants for knotted handlebodies, Algebr. Geom. Topol. 8 (2008), 1403--1418.
  • T. Kanenobu: Weak unknotting number of a composite $2$-knot, J. Knot Theory Ramifications 5 (1996), 161--166.
  • T. Kanenobu and H. Murakami: Two-bridge knots with unknotting number one, Proc. Amer. Math. Soc. 98 (1986), 499--502.
  • A. Kawauchi: A Survey of Knot Theory, Birkhäuser, Basel, 1996.
  • } kawauchi/index.html.}
  • C. Kearton and S.M.J. Wilson: Knot modules and the Nakanishi index, Proc. Amer. Math. Soc. 131 (2003), 655--663.
  • T. Kobayashi: A construction of arbitrarily high degeneration of tunnel numbers of knots under connected sum, J. Knot Theory Ramifications 3 (1994), 179--186.
  • J. Ma and R. Qiu: A lower bound on unknotting number, Chinese Ann. Math. Ser. B 27 (2006), 437--440.
  • W. Magnus, A. Karrass and D. Solitar: Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Interscience Publishers, John Wiley & Sons, Inc., New York, 1966.
  • K. Morimoto: Characterization of tunnel number two knots which have the property ``$2+1=2$'', Topology Appl. 64 (1995), 165--176.
  • K. Morimoto, M. Sakuma and Y. Yokota: Identifying tunnel number one knots, J. Math. Soc. Japan 48 (1996), 667--688.
  • Y. Nakanishi: A note on unknotting number, Math. Sem. Notes Kobe Univ. 9 (1981), 99--108.
  • F.H. Norwood: Every two-generator knot is prime, Proc. Amer. Math. Soc. 86 (1982), 143--147.
  • P. Ozsváth and Z. Szabó: Knots with unknotting number one and Heegaard Floer homology, Topology 44 (2005), 705--745.
  • D. Rolfsen: Knots and Links, Publish or Perish, Berkeley, CA, 1976.
  • M.G. Scharlemann: Unknotting number one knots are prime, Invent. Math. 82 (1985), 37--55.
  • M. Scharlemann and J. Schultens: The tunnel number of the sum of $n$ knots is at least $n$, Topology 38 (1999), 265--270.
  • H. Schubert: Knoten und Vollringe, Acta Math. 90 (1953), 131--286.
  • Z. Yang: Unknotting number of the connected sum of $n$ identical knots, J. Knot Theory Ramifications 17 (2008), 253--255.